BEHAVIOR OF CERTAIN NUTRITIONAL ELEMENTS IN RELATIONSHIP TO SOME POLLUTANT ELEMENTS AND REFLECTION ON THE NUTRITIONAL STATUS OF PLANT

 $\mathbf{B}\mathbf{y}$

SUZAN ALI EL-SAYED AHMED

B.Sc. Agric. Sci. (Soil Science), Ain Shams University, 2003 M. Sc. Agric. Sci. (Soil Science), Ain Shams University, 2009

A thesis submitted in partial fulfillment

Of

the requirements for the degree of

in
Agricultural Sciences
(Soil Science)

Department of Soil Science, Faculty of Agriculture, Ain Shams University

Approval Sheet

BEHAVIOR OF CERTAIN NUTRITIONAL ELEMENTS IN RELATIONSHIP TO SOME POLLUTANT ELEMENTS AND REFLECTION ON THE NUTRITIONAL STATUS OF PLANT

By

SUZAN ALI EL-SAYED AHMED

B.Sc. Agric. Sci. (Soil Science), Ain Shams University, 2003M. Sc. Agric. Sci. (Soil Science), Ain Shams University, 2009

This thesis for Ph. D. degree has been approved by:

Dr. Mohammed Ahmed Abd-EL-Motilib Prof. Emeritus of Soil Science, Department of Soil Science, Faculty of Agriculture, Al-Azhar University Dr. Mohammed Abd- EL-Fatah Eid Prof. of Soil Science, Department of Soil Science, Faculty of Agriculture, Ain Shams University Dr. Mohammed Ahmed Mostafa Prof. Emeritus of Soil Science, Department of Soil Science, Faculty of Agriculture, Ain Shams University

Prof. Emeritus of Soil Science, Department of Soil Science, Faculty

Date of examination: 24/5/2017

Dr. Adel El-Sayed EL-Leboudi

of Agriculture, Ain Shams University

BEHAVIOR OF CERTAIN NUTRITIONAL ELEMENTS IN RELATIONSHIP TO SOME POLLUTANT ELEMENTS AND REFLECTION ON THE NUTRITIONAL STATUS OF PLANT

By

SUZAN ALI EL-SAYED AHMED

B.Sc. Agric. Sci. (Soil Science), Ain Shams University, 2003 M. Sc. Agric. Sci. (Soil Science), Ain Shams University, 2009

Under the supervision of

Dr. Adel El-Sayed EL-Leboudi

Prof. Emeritus of Soil Science, Department of Soil Science, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Dr. Mohammed Ahmed Mostafa

Prof. Emeritus of Soil Science, Department of Soil Science, Faculty of Agriculture, Ain Shams University

Dr. Wafaa Mohammed Taha

Head research, Soil, Water and Environmental Research Institute, Agricultural Research Center.

.

ABSTRACT

Suzan Ali El-Sayed Ahmed. Behavior of Certain Nutritional Elements in Relationship to Some Pollutant Elements and Reflection on the Nutritional Status of Plant. Unpublished Doctor of Science. Thesis, Soils Dept., Fac. Agric., Ain Shams Univ., 2017.

Multi-series excised root experiments followed by short term adsorption experiments and pot experiments were conducted to study the adsorption and absorption of some heavy metals (cadmium and zinc) and interactions with macronutrients (potassium and phosphorus). The study involved evaluation for the uptake and adsorption of such heavy metals; effects of either potassium or phosphorus interactions on mechanics and kinetics of the indicated heavy metals were undertaken.

The study included evaluation for maximum uptake velocity constant (V_{max}) and Michaelis constant (K_m) as well as their responses to some environmental factors including concentration of the studied ions in the absorption media and absorption period.

Responses of adsorption rate of both Cd and Zn to certain environmental conditions were studied, such conditions being the applied ion concentration in the concerned solution, equilibrium concentration and interaction with other elements represented by potassium and phosphorus. Investigations were performed through evaluating the responses of ion adsorption to ion concentration in the concerned solution, this studies being carried out through evaluation for both a_{max} (the maximum adsorption) and b (binding energy constant of Langmuir isotherm model).

The responses of plant growth, element status at heading growth stage of wheat plant to application of both indicated elements (cadmium and zinc) and interactions with both potassium and phosphorus, respectively, were also evaluated.

Key words: Cadmium, Zinc, Potassium, Phosphorus, Excised roots, Uptake mechanics, Uptake kinetics, Barley, Adsorption, Langmuir equations Adsorption, Wheat, Plant growth, Nutrient Status.

ACKNOWLEDGEMENT

The authoress wishes to express her deep appreciations and gratitudes to **Dr. Adel. El-Sayed EL-Leboudi**, Professor of Soil Science, Soils Department, Faculty of Agriculture, Ain Shams University, **Dr. Mohammed Ahmed Mostafa**, Professor of Soil Science, Soils Department, Faculty of Agriculture, Ain Shams University and **Dr. Wafaa Mohammed Taha El- Etr**, Head Research, Soils, Water and Environ. Res. Institute, ARC. for their supervision, valuable suggestions, progressive criticisms, deep interest and effective guidance throughout the investigation and preparation of the manuscript as well as for their helpful personal advice.

Deep thanks and appreciation are introduced to the Development of Soil Conditioners Project, Dept. of Physics and Chemistry of Soil, Soils, Water and Environ, Res. Institute.

Finally, the authoress extends her deep thanks to her mother, brothers, sister, husband and daughters for their special patience during the performance of the whole work.

CONTENTS

		Pa
LIST O	F TABLES	I
LIST O	F FIGURES	7
1.	INTRODUCTION	-
2.	REVIEW OF LITERATURE	(
2.1.	Excised roots experiments	
2.1.1.	Cadmium behavior	4
2.1.1.1.	Response of uptake velocity to cadmium concentration	
	in the absorption media	
;	a. Mechanics	,
1	b. Kinetics	9
2.1.1.2.	Response of uptake velocity to absorption period	1
2.1.1.3.	Interactions with potassium	1
2.1.2.	Zinc behavior	1
2.1.2.1.	Response of uptake velocity to zinc concentration in	
	the absorption media	1
;	a. Mechanics	1
l	b. Kinetics	1
2.1.2.2.	Response of uptake velocity to absorption period	1
2.1.2.3.	Interactions with phosphorus	1
2.2.	Adsorption experiments	1
2.2.1.	Adsorption of cadmium and potassium	1
2.2.1.1.	Cadmium	1
2.2.1.2.	Potassium.	1
2.2.1.3.	Interactions between cadmium and potassium	1
2.2.2.	Adsorption of zinc and phosphorus	2
2.2.2.1.	Zinc	2
2.2.2.2.	Phosphorus	2
2.2.2.3	Interactions between zinc and phosphorus	2
2.3.	Pot experiments	2
2.3.1.	Element status in soil	2

		Page
2.3.1.1.	Availability of cadmium and potassium	23
2.3.1.1.1	Cadmium	23
2.3.1.1.2	Potassium.	24
2.2.1.1.3	Interactions between cadmium and potassium	25
2.3.1.2.	Availability of zinc and phosphorus	26
2.3.1.2.1	Zinc	26
2.3.1.2.2	Phosphorus	27
2.3.1.2.3	Interactions between zinc and phosphorus	28
2.3.2.	Plant growth	29
2.3.2.1.	Effect of cadmium and potassium on plant biomass	
	production	29
2.3.2.1.1	Cadmium	29
2.3.2.1.2	Potassium	30
2.3.2.1.3	Interactions between cadmium and potassium	31
2.3.2.2.	Effect of zinc and phosphorus on plant biomass	
	production	32
2.3.2.2.1	Zinc	32
2.3.2.2.2	Phosphorus	33
2.3.2.2.3	Interactions between zinc and phosphorus	33
2.3.3.	Element status of grown plants	34
2.3.3.1.	Effect of cadmium and potassium on element status	34
2.3.3.1.1	Cadmium	34
2.3.3.1.2.	Potassium.	35
2.3.3.1.3.	Interactions between cadmium and potassium	35
2.3.3.2.	Effect of zinc and phosphorus on element status	36
2.3.3.2.1	Zinc	36
2.3.3.2.2	Phosphorus	37
2.3.3.2.3	Interactions between zinc and phosphorus	38
3.	MATERIALS AND METHODS	39
3.1.	Excised roots experiments	39
3.1.1.	Preparation of excised roots	39

		Page
3.1.2.	Experimental	40
3.1.2.1.	Cadmium experiment	40
3.1.2.2.	Zinc experiment	40
3.2.	Adsorption experiments	41
3.2.1.	Cadmium and potassium experiments	42
3.2.1.1.	Cadmium experiment	42
3.2.1.2.	Potassium experiment	42
3.2.1.3.	Experiment of interaction between cadmium and	
	potassium in the concerned solution	42
3.2.2.	Zinc and phosphorus experiments	43
3.2.2.1	Zinc experiment	43
3.2.2.2	Phosphorus experiment	43
3.2.2.3	Experiment of interaction between zinc and	
	phosphorus in the concerned solution	43
3.3.	Pot experiments	44
4.	RESULTS AND DISCUSSION	48
4.1.	Excised roots experiments	48
4.1.1.	Cadmium	48
4.1.1.1.	Response of uptake velocity to cadmium concentration	
	in the absorption media under conditions of variable	
	potassium concentrations	49
8	a. Mechanics	53
ŀ	o. Kinetics	54
4.1.1.2.	Response of uptake velocity to absorption period under	
	conditions of variable K concentrations	56
4.1.2.	Zinc	60
4.1.2.1.	Response of uptake velocity to zinc concentration in	
	the absorption media under conditions of variable	
	phosphorus concentrations	60
8	a. Mechanics	64
ŀ	o. Kinetics	64

		P
4.1.2.2.	Response of uptake velocity to absorption period under	
	conditions of variable phosphorus concentrations	
4.2.	Adsorption Experiments	
4.2.1.	Adsorption of both cadmium and potassium from the	
	concerned solution.	
4.2.1.1.	Cadmium.	
4.2.1.2.	Potassium.	
4.2.1.3.	Interactions between cadmium and potassium in the	
	concerned solution	
4.2.2.	Adsorption of both zinc and phosphorus from the	
	concerned solution	
4.2.2.1.	Zinc	
4.2.2.2.	Phosphorus	
4.2.2.3.	Interactions between zinc and phosphorus in the	
	concerned solution	
4.3.	Pot experiments	
4.3.1.	Status of element in soil	
4.3.1.1.	Availability of cadmium and potassium in soil	
4.3.1.1.1.	Cadmium	
4.3.1.1.2.	Potassium	
4.3.1.1.3.	Interactions between cadmium and potassium in soil	
4.3.1.2.	Availability of zinc and phosphorus in soil	
4.3.1.2.1.	Zinc	
4.3.1.2.2.	Phosphorus	
4.3.1.2.3.	Interactions between zinc and phosphorus in soil	
4.3.2.	Plant growth	
4.3.2.1.	Effect of cadmium and potassium on biomass	
	production	
4.3.2.1.1.	Cadmium	
4.3.2.1.2.	Potassium	
4.3.2.1.3.	Interactions between cadmium and potassium	

		Page
4.3.2.2.	Effect of zinc and phosphorus on biomass production.	123
4.3.2.2.1.	Zinc	123
4.3.2.2.2.	Phosphorus	124
4.3.2.2.3.	Interactions between zinc and phosphorus	125
4.3.3.	Element status of grown plants	126
4.3.3.1	Effect of cadmium and potassium on the studied	
	elements	126
4.3.3.1.1.	Cadmium	126
4.3.3.1.2.	Potassium.	128
4.3.3.1.3.	Interactions between cadmium and potassium	129
4.3.3.2.	Effect of zinc and phosphorus on the studied elements.	131
4.3.3.2.1.	Zinc	131
4.3.3.2.2.	Phosphorus	132
4.3.3.2.3.	Interactions between zinc and phosphorus	134
5.	SUMMARY	141
6.	RFERENCES	150
7.	ARABIC SUMMARY	

LIST OF TABLES

Гable No.		Page
1	Some physical and chemical properties of the	
	experimental soil	41
2	Kinetic parameters for the cadmium uptake, by the	
	studied excised barley roots, at the different	
	studied absorption periods under conditions of	
	variable potassium concentrations	55
3	Kinetic parameters for the zinc uptake, by the	
	studied excised barley roots, at the different	
	studied absorption periods under conditions of	
	variable phosphorus concentrations	65
4	Langmuir isotherm parameters for adsorption of	
	cadmium onto soil samples	73
5	Influence of applied cadmium concentration in	
	solution on differential buffering capacity (DBC)	
	and percent saturation (Θ %) of soil	74
6	Langmuir isotherm parameters for adsorption of	
	potassium onto soil samples	77
7	Influence of applied potassium concentration in	
	solution on differential buffering capacity (DBC)	
	and percent saturation (Θ %) of soil	77
8	Langmuir isotherm parameters for adsorption of	
	cadmium and potassium onto soil samples	84
9	Influence of applied cadmium concentration in	
	solution on differential buffering capacity (DBC)	
	and percent saturation (Θ %), for soil under	
	different potassium concentrations	85
10	Langmuir isotherm parameters for adsorption of	
	potassium and cadmium onto soil samples	86
11	Influence of applied potassium concentration in	
	solution on differential buffering capacity (DBC)	

Гable No.		Page
	and percent saturation (Θ %), for soil under	
	different cadmium concentrations	87
12	Langmuir isotherm parameters for adsorption of	
	zinc onto soil samples	91
13	Influence of applied zinc concentration in solution	
	on differential buffering capacity (DBC) and	
	percent saturation (Θ %) of soil	92
14	Langmuir isotherm parameters for adsorption of	
	phosphorous onto soil samples	95
15	Influence of applied phosphorous concentration in	
	solution on differential buffering capacity (DBC)	
	and percent saturation (Θ %) of soil	95
16	Langmuir isotherm parameters for adsorption of	
	zinc and phosphorus onto soil samples	102
17	Influence of applied zinc concentration in solution	
	on differential buffering capacity (DBC) and	
	percent saturation (Θ %), in soil under different	102
18	phosphorous concentrations	103
10	Langmuir isotherm parameters for adsorption of phosphorus and zinc onto soil samples	104
19	Influence of applied phosphorous concentration in	104
1)	solution on differential buffering capacity (DBC)	
	and percent saturation (Θ %), in soil under different	
	zinc concentrations	105
20	Availability of cadmium (mg kg ⁻¹) in soil, as	100
_ •	responded to applied cadmium, at heading growth	
	stage of wheat plants	107
21	Availability of potassium (mg kg ⁻¹) in soil, as	
	responded to applied potassium, at heading growth	
	stage of wheat plants	108
22	Influence of applied potassium on cadmium	

Table No.		Page
	availability in soil (mg kg-1), as responded to	
	applied cadmium at heading growth stage of wheat	
	plants	112
23	Influence of applied cadmium on potassium	
	availability in soil (mg kg ⁻¹), as responded to	
	applied potassium, at heading growth stage of	
	wheat plants	112
24	Availability of zinc (mg kg ⁻¹) in soil, as responded	
	to applied zinc, at heading growth stage of wheat	
	plants	113
25	Availability of phosphorus (mg kg ⁻¹) in soil, as	
	responded to applied phosphorus, at heading	
	growth stage of wheat plants	115
26	Influence of applied phosphorus on zinc	
	availability in soil (µg kg ⁻¹) at heading growth	
	stage of wheat plant	117
27	Influence of applied zinc on availability of	
	phosphorus in soil (mg kg ⁻¹) at heading growth	
	stage of wheat plants	118
28	Responses of fresh and dry weights (g plant -1)	
	along with moisture content (%) of wheat plants, at	
	heading growth stage, to cadmium applications	119
29	Responses of fresh and dry weights (g plant -1)	
	along with moisture content (%) of wheat plants, at	
	heading growth stage, to potassium applications	121
30	Responses of fresh and dry weights (g plant -1)	
	along with moisture content (%) of wheat plants, at	
	heading growth stage, to cadmium and potassium	
	applications	122
31	Responses of fresh and dry weights (g plant ⁻¹)	
	along with moisture content (%) of wheat plant, at	

Гable No.		Page
	heading growth stage, to zinc applications	124
32	Responses of fresh and dry weights (g plant ⁻¹)	
	along with moisture content (%) of wheat plants, at	
	heading growth stage, to phosphorus applications	125
33	Responses of fresh and dry weights (g plant ⁻¹)	
	along with moisture content (%) of wheat plants, at	
	heading growth stage, to zinc and phosphorus	
	applications	126
34	Concentration (µg g-1) and total content of	
	cadmium (µg plant ⁻¹) in wheat plant as affected by	
	cadmium concentrations in soil at heading growth	
	stage of plants	127
35	Concentration (mg g-1) and total content of	
	potassium (mg plant ⁻¹) in wheat plant as affected	
	by potassium concentrations in soil at heading	
	growth stage of plants	129
36	Concentration (µg g-1) and total content of	
	cadmium (µg plant -1) in wheat plant as affected by	
	cadmium and potassium concentrations in soil at	
	heading growth stage of plants	130
37	Concentration (mg g ⁻¹) and total content of	
	potassium (mg plant ⁻¹) in wheat plant as affected	
	by potassium and cadmium concentrations in soil	
	at heading growth stage of plants	130
38	Concentration (µg g ⁻¹) and total content of zinc (µg	
	plant ⁻¹) in wheat plant as affected by zinc	
	concentrations in the growth media at heading	
	growth stage of plants	132
39	Concentration (mg g ⁻¹) and total content of	
	phosphorus (mg plant ⁻¹) in wheat plant as affected	
	by phosphorus concentrations in soil at heading	

Table No.		Page
	growth stage of plants	133
40	Effect of phosphorus applications on phosphorus metabolism (I/O) of wheat plants at heading	
41	stage	134
	phosphorus concentrations in soil at heading growth stage of plants	135
42	Concentration (mg g ⁻¹) and total content of phosphorus (mg plant ⁻¹) in wheat plant as affected by phosphorus and zinc concentrations in soil at	
	heading growth stage of plants	135
43	Effect of zinc and phosphorus applications on phosphorus metabolism (I/O) of wheat plants at heading stage affected by phosphorus and zinc concentrations in soil at heading growth stage of	
	plants	137