PREPARATION OF SOME MEMBRANES BY RADIATION GRAFTING AND ITS APPLICATION

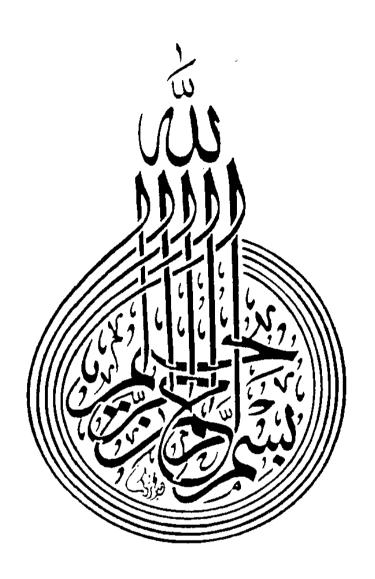
THESIS
Submitted to
University College for Girls
Ain Shams University
(Cairo)

541.13.

In the Fulfilment of the Requirements for the Degree of Doctor of Philosophy
In Chemistry

BY

MAGDA BORHAN EL-ARNAOUTY (M.Sc.)


National Center for Radiation Research and Technology (Atomic Energy Authority)

> CAIRO, EGYPT 1997

TO MY FAMILY

PREPARATION OF SOME MEMBRANES BY RADIATION GRAFTING AND ITS APPLICATION

Thesis Advisors

Approved

- 1. Prof. Dr. Ahmed Abdel-Reheim Taha A. Talu-
- 2. Prof. Dr. Ahmed M. Dessouki C Dessort
- 3. Assist. Prof. Dr. Nafossa Hafez Ahmed W Taker

Prof. Dr. ESSAM M. EZZO

Head of Chemistry Department

ACKNOWLEDGEMENT

I would like to express my deepest gratitude and thanks to Prof. Dr. Ahmed A. Taha, Professor of Physical Chemistry, University College for Girls, Ain-Shams University, to Prof. Dr. Ahmed M. Dessouki, Head of Industrial Irradiation Division, National Center for Radiation Research and Technology (NCRRT), and to Assi. Prof. Dr. Nafossa H. Taher, for suggesting the point of research, supervision, continuous guidance and valuable discussions throughout this work.

Many sincere thanks to Prof. Dr. E.A. Hegazy, Head of Polymer Chemistry Department, for interest and facilities provided, also, my best thanks to all my colleagues in the Department and the center for their help in various ways.

ABSTRACT

Magda Borhan El-Arnaouty.

Preparation of some membranes by Radiation Grafting and its Application.

National Center for Radiation Research and Technology (Atomic Energy Authority of Egypt).

The main purpose of this study is to prepare grafted membranes with good properties by the direct radiation grafting method of various monomers such as N-vinyl-pyrrolidone (NVP), Acrylamide (AAm) and its binary system onto poly (tetrafluoroethylene-hexafluoro-propylene-vinylidine fluoride) films (TFB), and some polyolefins such as polyethylene films (PE) and polypropylene films (PP) for the same purpose.

These grafted membranes play a very important role in some practical applications in various separation processes. The most important applications of these synthetic membranes are in the medical and biomedical field. Also these synthetic membranes can be used in industrial mass separation processes such as micro, ultraand hyperfiltration, electrodialysis and gas separations. The results suggest that the prepared membranes can be used in the removal of some heavy metals such as Pb and Hg from waste water and may be used in other practical applications such as hemodialysis.

Key words: (Radiation, grafting, properties, applications)

CONTENTS

	Page
AIM OF THE WORK	1
CHAPTER I	
INTRODUCTION	3
1. Radiation Grafting of Polymeric Membranes	4
A. Graft copolymerization	4
B. Effect of radiation on grafting	10
C. Effect of dose and dose rate on grafting.	13
D. Effect of diffusion	14
E. The termination step	15
2. The characterization of Graft Copolymer	15
A. Ion exchange character	16
B. The permeability	17
C. The hydrogel character	17
D. Porosity	18
3. Thermal Analysis Technique	. 19
A. Thermogravimetric Analysis (TGA)	. 19
B. Differential Scanning Calorimetry (DSC)	. 20
4. Applications of Radiation Grafting	. 23
CHAPTER II	
LITERATURE REVIEW	. 24
 Radiation Grafting of Individual Acrylamid and N-vinyl pyrrolidone onto (polyolefins) . 	_

	Page
 Radiation Grafting of Individual Acrylamide and N-vinyl pyrrolidone onto fluorinated polymers	36
3. Radiation Grafting of Binary Comonomer onto polymers	48
4. Permeability of Grafted Membranes and Migration of Heavy Elements	57
CHAPTER III	
EXPERIMENTAL	68
1. Materials	68
2. Apparatus and Methods	69
1. Gamma radiation source	69
2. Graft copolymerization	69
3. Water uptake measurements	70
4. Alkaline treatment	70
5. IR spectroscopic measurements	71
 Mechanical properties measurements (Ten- sile strength - Elongation) 	71
7. Electrical conductivity measurements	72
8. Thermal measurements a. Differential Scanning Calorimeter	73
(DSC)b. Thermal Gravimetric Analysis (TGA)	73 73
9. Atomic absorption technique	73
10. Semi-Equilibrium Dialysis (SED)	73
CHAPTER IV	
RESULTS AND DISCUSSION	75
 Radiation Grafting of NVP, AAm and the Binary Mixture of them onto polyethylene 	7.