"Hydrogeophysical-Hydrogeological Study For The Nile Valley Tract Streched Between Beni-Suef and El-Saff, Egypt"

THESIS

Submitted in Partial Fulfillment of the Requirement for the Degree of

DOCTOR OF PHILOSOPH

in Hydrogeophysics

ByAHMED MOHAMED SOBHY AHMED HEL

B. Sc.(Hons.), M.Sc.

Supervised By

Prof. Dr. Ahmed M. Sabri

Head of Geophysics Department

Faculty of Science Ain Shams University Prof. Dr. Ahmed S. Abu El-Ata

Professor of Geophysica Faculty of Scient

Ain Shams/Un

63380

Dr. Taher M.Hassan Head of Desert Department

Research Institute for Groundwater

Submitted to Department of Geophysics

Faculty of Science

Ain Shams University


CAIRO, EGYPT

1996

ABSTRACT

On "Hydrogeophysical-Hydrogeological Study For the Nile Valley Tract Stretched Between Beni-Suef And El-Saff, Egypt"

The purpose of this work is to analyze, critically, the shallow section of the study area, that bounded by latitudes 29° 00° & 29° 40° N and longitudes 30° 50° & 31° 25° E, through integrated shallow geophysical and geological system.

This involves, an overview for the geomorphological and geological background of the investigated area. Accordingly, three main geomorphologic units are outlined, beside the drainage and surface hydrological system of such an area. Also, the geological units cropped out on the surface range from Middle Eocene to Quaternary. Moreover, the subsurface stratigraphy has been dealt with, starting from the deep Pre-Cambrian rocks up to the most recent Quaternary deposits, in addition to the dominant structural elements of the study area.

Then after, interpretations for the available geophysical data, that represented by the gravitational and geoelectrical data were done for determining the main shallow subsurface geological conditions controlling the groundwater occurrences. By this way, the gravity analysis is mainly devoted to decipher the upper section of the study area, that embraces the shallow (Quaternary) aquifer, through separating the residual gravity anomalies from the regional ones. These residual gravity anomalies have been subjected to a number of analyses, mainly to determine the extension of the water-bearing main aquiferous unit in terms of width, length and thickness. From these, the probable paleocourse of the Nile River has been aligned.

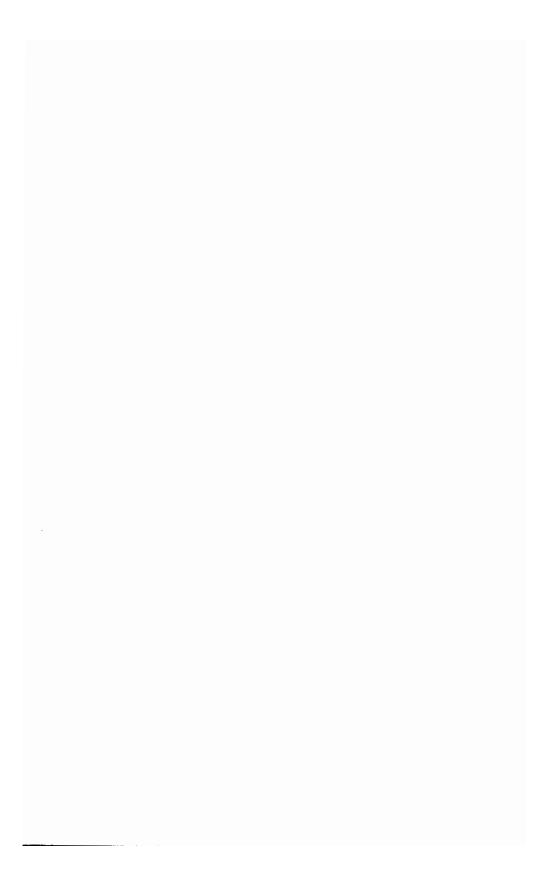
The geoelectrical analysis is essentially oriented for determining the geometry of the water-bearing formation and deducing the probable distribution of the expected groundwater salinity. This has been accomplished through the interpretation of the available resistivity data through the manual interpretation which had been further ascertained

through the analytical automatic interpretation using two computer programs of *Hemker (1987)* and *Zohdy (1989)*, accompanied by utilizing the transverse resistance of the Dar Zarrouk parameters. From these, it can be deduced that, the shallow subsurface section could be generally differentiated into three main layers of varying and distinguishable electrical resistivity ranges. Then, the expected distribution of the water salinity could be delineated using the determined resistivity values and the available salinity information from some given wells. Also, checking the alignment of the paleocourse of the Nile River.

The hydrogeological investigations involved an overview about the irrigation system used in the old cultivated lands and the newly reclaimed lands. The general hydrogeological setup of the considered area is discriminated into five hydrogeological units ranged from the highly productive to the non-productive. Then, the aquifers are differentiated age-wise into three major aquifers; the Pleistocene, the Plio-Pleistocene and the Middle Eocene Carbonate. This is further followed by discussing the water, logging problems originated in the study area due to the effect of irrigation losses. Finally, the area has been classified into four main units of varying water potentiality; from high to medium to low to none potential units.

The hydrogeochemical analysis involved the study of the hydrogeochemical assumptions of the groundwater contained in the different water-bearing units. The hydrochemical studies have been conducted on the surface water, Pleistocene aquifer's water, Plio-Pleistocene aquifer's water and the Middle Eocene aquifer's water using the pH, TDS, E.C., ion dominance, water type, total hardness and the hydraulic parameteres. Accordingly, it is concluded that, generally the water salinity decreases towards the Nile River and increases towards the desert areas. Then, the probable groundwater genesis has been concluded using the classifications of Sulin (1946), Durov (1948) and Ovitchinkov (1963). From such a study, it is deduced that, the Plio-Pleistocene water is ranging in origin between meteoric and marine and the Eocene water is entirely of marine origin. This is followed finally by evaluating the available groundwater of such aquifers for drinking & domestic, poultry and irrigation purposes.

Contents


Chapter 1: Physical Setting	Page No.
1.1- Introduction	1
1.2- Location of The Study Area	2
1.3- Climate	2
1.4- Scope of The Present Work	4
1.5- Previous Work	4
Chapter 2: Geomorphology	
2.1- Introduction	7
2.2-Geomorphologic Setting	8
2.2.1-Geomorphic Processes	8
2.2.2-Geomorphologic Features	10
2.3- Hydromorphologic Pattern	13
2.3.1- Hydrographic Features	13
2.3.2- Surface Hydrological System	16
Chapter 3: Geologic Setting	
3.1-Introduction	19
3.2-The Surface Geology	31
3.2.1-Middle Eocene Rocks	32
3.2.2-Upper Eocene Rocks	32
3.2.3-Pliacene Deposits	22

3.2.4-Quaternary Deposits	33
3.3- Subsurface Stratigraphy	35
3.3.1-Pre-Cambrian Rocks,	36
3.3.2-Paleozoic Rocks	36
3.3.3-Jurassic Rocks	36
3.3.4-Cretaceous Rocks,	37
3.3.5-Paleocene-Lower and Middle Eocene Rocks	38
3.3.6-Upper Eocene Rocks	39
3.3.7-Oligocene Rocks	39
3.3.8-Miocene Rocks	39
3.3.9-Pliocene Rocks	40
3.3.10-Quaternary Rocks	43
3.4-Geologic Structures	47
3.4.1-General Structure Setting	47
3.4.2-Local Structural Pattern	50
Chapter 4: Gravity Interpretation	
4.1- Introduction	59
4.2- Gravity Data and Qualitative Interpretation	60
4.3- Gravity Separation	63
4.3.1- Regional Maps	64

4.3.2- Residual Maps	69
4.4- Quantitative Interpretation	69
4.4.1- Fournier and Krupicka Method	74
4.4.2- Svancara's Method	81
Chapter 5: Geoelectrical analysis	
5.1- Introduction	89
5.2- General Outline of The Geoelectrical Resistivity Procedure	90
5.2.1-Types of Electrode Configuration	90
5.2.2-The Resistivity Calculation	94
5.2.3-The Electrical Properties of Rocks	96
5.2.4-The Vertical Electrical Sounding and Horizontal Electrical Profiling	99
5.2.5-Source of Geoelectrical Data	99
5.3-Qualitative Interpretation	102
5.3.1-Types of Sounding Data	102
5.3.2- Iso-Apparent Resistivity Maps	104
5.3.3- Apparent Resistivity Profiles	121
5.3.4- The Apparent Resistivity Sections	142
5.4- Quantitative Interpretation	166
5.4.1-Interpreting The Field Apparent Resistivity Curves	166
5.4.2-Geoelectrical Cross Sections	191

5.4.3-Geologic Implications Based on	
Resistivity Data Interpretation	218
5.5-Expected Groundwater Quality	224
5.6-Detection of The Quaternary Paleochannel of The Nile River	232
Chapter 6: Hydrogeological Setting	
6.1-Introduction	234
6.2-General Hydrogeological Setting of The Nile Valley	237
6.3-Local Hydrogeological System of The Study Area	239
6.3.1-Pleistocene Aquifer	242
6.3.2-Plio-Pleistocene Aquifer	243
6.3.3-Eocene Carbonate Aquifer	244
6.4- Groundwater Movement	246
6.4.1-Groundwater Flow	246
6.4.2-Groundwater Recharge and Discharge.	260
6.5- Environmental Impact on	
Groundwater Regime	263
6.6- Groundwater Potentiality in The Study Area	264
Chapter 7: Hydrochemical and	
Hydrogeochemical Aspects	
7.1 Introduction	260

7.2-hydrochemical Characteristics	270
7.2.1-Surface Water	296
7.2.2-Pleistocene Aquifer	299
7.2.3-Plio-Pleistocene Aquifer	306
7.2.4-Eocene Carbonate Aquifer	310
7.3-Hydrogeochemical Facies	312
7.3.1-Pleistocene Aquifer	321
7.3.2-Plio-Pleistocene Aquifer	326
7.3.3-Eocene Carbonate Aquifer	328
7.4- Groundwater Quality in Relation to Use	332
7.4.1-Evaluation of Groundwater for Drinking & Domestic Purposes	332
7.4.2-Evaluation of Groundwater for Livestock Purpses	336
7.4.3-Evaluation of Groundwater for Irrigation Purposes	337
Chapter 8: Summary and Conclusions	347
References	355
Appendix I	
Appendix II	
Appendix III	

List of Figures

Fig. No.	Paş	ge No.
1	Location map for the study area	3
2	Topographic map for the study area	9
3	Geomorphologic units	11
4	Hydromorphologic features	14
5	Rosetta diagram showing the major tectonic trends of Egypt	20
6	Surface geologic map	21
7	Geologic map of east Beni-Suef area	22
8	Stratigraphic succession in the study area	23
9	Generalized stratigraphic column within the study area	24
10	Location map for the deep wells in the study area	25
11	Stratigraphic cross-section of BRE 6-1 well	26
12	Stratigraphic cross-section of BRE 27-1 well	27
13	Lithologic cross-section of the G2 well	28
14	Lithologic cross-section of the G3 well	29
15	Lithologic cross-section of the G4 well	30
16	Geological cross-sections within the study area.	41
17	Diagrammatical cross-sections within the study area.	42
18	A map showing surface structures in the northern part of Egypt.	48

19	Main directions of faulting and north Sinai folds, Egypt	49
20	Trends of regional tectonic stresses	51
21	Trends of regional tectonic deformations	52
22	Structural lineaments within the study area	56
23	Azimuth-frequency diagram for the structural lineaments within the study area	57
24	Bouguer gravity anomaly map	61
25	Regional gravity anomaly map at R=90m	65
26	Regional gravity anomaly map at R=180m	66
27	Regional gravity anomaly map at R=270m	67
28	Regional gravity anomaly map at R=360m	68
29	Residual gravity anomaly map at R=90m	70
30	Residual gravity anomaly map at R=180m	71
31	Residual gravity anomaly map at R=270m	72
32	Residual gravity anomaly map at R=360m	73
33	Location map for the studied gravity profiles.	75
34	The studied averaged residual gravity profiles.	76
35	The generalized shape of geologic structure and associated gravity anomaly	78
36	Geologic body depth vs. anomaly value for body width-to-depth ratio	79
37	Schematic shape of the model structure cross-section and the corresponding gravity	82