Physiological and Biochemical Studies on Certain Microorganisms Isolated From Some Confectionery and Bakery Products

A Thesis

Submitted to the Botany Dept.

Women's college Ain Shams University

641.331 -

By

SHERIF SABRY RAGAB

Assist Lecture-Nutrition&Food Science Dept. Home Economic Faculty-Menoufia University

47684

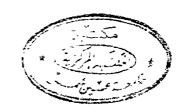
Supervised By

DR. SAWSAN M. ELGAMAL

Prof. of Microbiology. Botany Dept. Women's College-Ain Shams Univ.

DR. M. REDA ELSHERBINY

Ass. Prof. of Microbiology Nutrition Institute-Cairo


DR. M. FAHMY SADIK

Head of food Hygiene Dept. Nutrition Institute-Cairo

DR.FATMA ELZAHARA A. ELSHERIF

Lecture of Microbiology
Home Economic Faculty-Menoufia University

For the degree of Ph.D. of Science in Microbiology
1993

Approval Sheet

:Sherif Sabry Ragab Name

Title: Physiological and biochemical studies on certain microorganisms isolated from some confectionery and bakery products.

This thesis has been approved by:

Prof. Dr./ Sawsan Mohamed El-Gamal

Prof. of microbiology - Ain Shams University. (Faculty of women's)

Prof. Dr./ Mohamed Fahmi Sadiek

Prof. of food hygiene - Nutrition Institute, Cairo. M. R. El Sherber

Dr./ Mohamed Reda El-Shrbiny

Asst. Prof. of microbiology - Nutrition Institute, Cairo.

Dr./ Fatma El-Zahraa A. El-Sherif

Lecture of microbiology - Menoufia University. (Home Economic Faculty)

این دیر در

CONTENTS

Subject	Page
ABSTRACT LIST OF TABLES ACKNOLEDGMENT	
INTRODUCTION	1
AIM of the STUDY	4
LITERATURE REVIEW	. 5 7
- Microbial contamination of foods	
- Bacteria as an indicator for food safety	8
- Incidence of staphylococcal enterotoxins	24
- Yeasts and moulds in foods	31
 Significance of mycotoxins in food safety 	34
- Contamination of bakery products	45
* Contamination by bacteria	45
. Contimination of cream-filled pastries	4 5
. Contamination of cake	52
. Contamination of bread	54
. Contamination of pizza	56
* Contamination by moulds and yeasts	58
. Contamination of cream-filled pastries	58
. Contamination of cake	60
. Contamination of bread	61
. Contamination of pizza	64
Aflatoxin in bakery products	65
- Contamination of confectionery products	67
* Contamination by bacteria	67
* Contamination by moulds and yeasts	7 2
. Aflatoxin in confectionery products	7 6
 Contaminatin of bakery and confectionery raw ingredients 	79
- Application of preservatives to foods	85
* Synthetic preservatives	88
* Natural preservatives	95
* Effect of preservsatives on the microbial cells	106
- Application of HACCP Consent	108

Subject	Page
MATERIAL & METHODS	115
RESULT & DISCUSSION	128
I- Microbiologica survey of bakery products	128
* Mesophilic aerobic bacteria	128
* Coliform bacteria	135
* Staph. aureus	143
* Bacillus cereus	149
* Moulds	155
* Yeasts	162
II- Microbiological surevey of confectionery products	167
* Mesophilic aerobic bacteria	167
* Coliform bacteria	174
* Staph. aureus	181
*Bacillus cereus	189
* Moulds	194
* Yeasts	199
III- Microbiological profile of creep contained essentia	
oils and synthetic preservatives	204
* Mesophilic aerobic bacteria	205
* Coliform bacteria	220
* Staph. aureus	232
* Bacillus cereus	245
* Moulds	256
* Yeasts	266
IV- Microbiological profile of creep raw ingredients	275
V - Microbiological profile of equipments used in creep production	284
VI- Antimicrobial potency of the essential oils and	
synthetic preservatives	29
* Antimicrobial potency by use microatmosphere technique	291
* Antimicrobial potency by use direct incorporation technique	300
VII- Effect of natural oils and synthetic preservatives	-
on the production of microbial enzymes as effected by	
environmental conditions	335
* Effect of temperature	335
* Effect of pH	356
* Effect of water activity	360

Subject	Page
VIII- Effect of essential oils and synthetic preservatives on the activity of microbial enzymes	407
IX- Effect of essential oils and synthetic preservatives on	
the inhibition of staphylococcal enterotoxin production	416
* Effect of essential oils	410
* Effect of synthetic preservatives	417
X- Myctoxin production as effected by essential oils and	
synthetic preservatives	420
* Microbiological assay of mycotoxin	421
* Mycotoxin assay by using dermal toxicity test	428
CONCLUSION	436
RECOMMENDATION	438
SUMMARY	439
REFERENCES	445
ARABIC SUMMARY	

ABSTRACT

Natural essential oils (clove; pepper mint; lemon; and cumin) and synthetic preservatives (Potasium sorbate; succinic acid; and citric acid) has clear antimicrobial effect on the groth; enzymatic activities; and toxin production of microorganisms (moulds; yeasts; and bacteria) related directly to the contamination of both bakery and confectionery products.

These substances when applied to the foods in proper levels cause prolonging of the shelf life of Creep (sweet bakery product) .

List of Figures

	Title	
1-	Mesophilic aerobic bacteria in bakery products.	129
2-	Coliform bacteria in bakery products.	136
3-	Staph aureus in bakery products.	144
4-	Bacillus cereus in bakery products.	150
5-	Moulds in bakery products.	156
6-	Yeasts in bakery products.	163
7-	Mesophilic aerobic bacteria in confectionery products.	168
8-	Coliform bacteria in confectionery products.	175
9-	Staph aureus in confectionerry products.	182
10-	Bacillus cereus in confectionery products.	190
11-	Moulds in confectionery products.	195
12-	Yeasts in confectionery products.	200
13-	Growth initiation of moulds as affected by clove oil.	302
14-	Growth initiation of yeasts as affected by clove oil.	303
15-	Growth initiation of bacteria as affected by clove oil.	304
16-	Growth initiation of moulds as affected by pepper mint oil.	307
17-	Growth initiation of yeasts as affected by pepper mint oil.	309
18-	Growth initiation of bacteria as affected by pepper mint oil.	310
19-	Growth initiation of moulds as affected by lemon oil.	312
20-	Growth initiation of yeasts as affected by lemon oil.	313
21-	Growth initiation of bacteria as affected by lemon oil.	315
22-	Growth initiation of moulds as affected by cumin oil.	317
23-	Growth initiation of yeasts as affected by cumin oil.	318
24-	Growth initiation of bacteria as affected by curnin oil.	320
25-	Growth initiation of moulds as affected by potassium sorbate.	322

		<u>Page</u>
26-	Growth initiation of yeasts as affected by potassium sorbate.	323
27-	Growth initiation of bacteria as affected by potassium sorbate.	325
28-	Growth initiation of moulds as affected by succinic acid.	326
29-	Growth initiation of yeasts as affected by succinic acid.	328
30-	Growth initiation of bacteria as affected by succinic acid.	329
31-	Growth initiation of moulds as affected by citric acid.	331
32-	Growth initiation of yeasts as affected by citric acid.	332
33-	Growth initiation of bacteria as affected by citric acid.	334

List of Tables

	Title	
1-	Mesophilic aerobic bacteria in creep contained essential oils and stored at 25°c.	206
2-	Mesophilic aerobic bacteria in creep contained essential oils and stored at 5° c.	211
3-	Mesophilic aerobic bacteria in creep contained synthetic preservatives and stored at $25^{\circ}\mathrm{c}$.	214
4-	Mesophilic aerobic bacteria in creep contained synthetic preservatives and stored at $5^{\rm o}{\rm c}$.	217
5-	Coliform bacteria in creep contained essential oils and stored at 25°c.	221
6-	Coliform bacteria in creep contained essential oils and stored at 5°c.	224
7-	Coliform bacteria in creep contained synthetic preservatives and stored at 250c.	227
8-	Coliform bacteria in creep contained synthetic preservatives and stored at 5°c.	230
9-	Staph. aureus in creep contained essential oils and stored at 25°c.	233
10-	Staph. aureus in creep contained essential oils and stored at 5°c.	236
11-	Staph. <u>aureus</u> in creep contained synthetic preservatives and stored at 25°c.	239
12-	Staph. <u>aureus</u> in creep contained synthetic preservatives and stored at 5°c.	242
13-	Bacillus cereus in creep contained essential oils and stored at 25°c.	2 4 6

		<u>Page</u>
14-	Bacillus cereus in creep contained essential oils and stored at 5°c.	248
15-	Bacillus cereus in creep contained synthetic preservatives and stored at 25°c.	251
16-	Bacillus cereus in creep contained essential oils and stored at 5°c.	254
17-	Moulds in creep contained essential oils and stored at 25°c.	257
18-	Moulds in creep contained essential oils and stored at 5°c.	260
19-	Moulds in creep contained synthetic preservatives and stored at 25°c.	263
 20-	Moulds in creep contained synthetic preservatives and stored at 5°c.	265
21-	Yeasts in creep contained essential oils and stored at 25°c.	257
22-	Yeasts in creep contained essential oils and stored at 5°c.	269
23-	Yeasts in creep contained synthetic preservatives and stored at 25°c.	272
24-	Yeasts in creep contained synthetic preservatives and stored at 5°c.	274
25-	Microbiological profile of creep raw ingredients.	276
26-	Microbiological profile of creep equipments.	285
27-	Antimicrobial potency of essential oils.	292
28-	Score of antimicrobial potency of essential oils.	296

		<u>Page</u>
29-	Antimicrobial potency of synthetic preservatives.	298
30-	Score of antimicrobial potency of synthetic preservatives.	299
31-	Inhibition of amylase production by moulds as affected by temp.	336
32-	Inhibition of amylase production by yeasts as affected by temp.	337
33-	Inhibition of amylase production by bacteria as affected by temp.	339
34-	Inhibition of protease production by moulds as affected by temp.	341
35-	Inhibition of protease production by yeasts as affected by temp.	343
36-	Inhibition of protease production by bacteria as affected by temp.	345
37-	Inhibition of lipase production by moulds as affected by temp.	347
38-	Inhibition of lipase production by yeasts as affected by temp.	350
39-	Inhibition of lipase production by bacteria as affected by temp.	352
40-	Inhibition of amylase production by moulds as affected by PH.	357
41-	Inhibition of amylase production by yeasts as affected by PH.	360
42-	Inhibition of amylase production by bacteria as affected by PH.	361
43-	Inhibition of protease production by moulds as affected by PH.	364
44	Inhibition of protease production by yeasts as affected by PH.	367
45	- Inhibition of protease production by bacteria as affected by PH.	369
46	Inhibition of lipase production by moulds as affected by PH.	372

		Page
47-	Inhibition of lipase production by yeasts as affected by PH.	374
48-	Inhibition of lipase production by bacteria as affected by PH	377
49-	Inhibition of amylase production by moulds as affected by aW.	381
50-	Inhibition of amylase production by yeasts as affected by aW.	384
51-	Inhibition of amylase production by bacteria as affected by aW.	387
52-	Inhibition of protease production by moulds as affected by aW.	390
53-	Inhibition of protease production by yeasts as affected by aW.	392
54-	Inhibition of protease production by bacteria as affected by aW.	395
55-	Inhibition of lipase production by moulds as affected by aW.	398
56-	Inhibition of lipase production by yeasts as affected by aW.	401
57-	Inhibition of lipase production by bacteria as affected by aW.	404
58-	Inhibition of amylase actively as affected by preservatives.	408
59-	Inhibition of protease actively as affected by preservatives.	410
60-	Inhibition of lipase actively as affected by preservatives.	412
61-	Inhibition of enterotoxin production as affected by preservatives.	418
62-	- Produced mycotoxins by fungal isolates.	422
63	- Microbiological assay of mycotoxin production.	423
64	 Biological assay of mycotoxin production as affected by essential oils. 	429
65	 Biological assay of mycotoxin production as affected by preservatives 	. 433

ACKNOWLEDGMENT

I wish to express my hearty appreciation to **Dr. Sawsan M. El.Garnal**, Prof. of microbiology, botany department, college for women's, Ain Shams University for her interest indispensable advice, valuable comments and criticism.

My sincere gratitude and indebtedness are due to **Dr. M. Fahmi Sadiek**, head of food hygiene department, nutrition institute, Cairo for suggesting the problem and significant advices in the preparation of the thesis.

I would like to express my sincere gratitude to **Dr. M. Reda El-Sherbiny**, Prof. of microbiology, nutrition institute, Cairo for his valuable comments and criticism.

Thanks are also payed to **Dr. Fatma El-Zahraa A. El-Sherif,** Lecture of microbiology, home economics faculty, Menoufia University, for her helpful action and kind encouragement.

The author is thankful to **Dr. Samir El-Dashloty**, dean of home economics faculty, Menoufia University for the facilities provided for this work.

Introduction

Significant levels of human illness in different areas of the world are related mainly to consumption of foods contaminated with infectious microorganisms such as Staph. aureus, Bacillus cereus, Escherichia coli, Salmonella Sp., Shigella <u>sp.,</u> Clostridium perfringens, Clostridium botulinum, Vibrio cholera, Vibrio parahemolyticus, Brucella Sp., and group A streptococci, in addition to some toxigenic genera οf moulds such as Penicillium, Aspergillus, Alternaria and Cladosporium. The main and abstitute effects of microbial contamination of foods are due to the ability of these organisms to produce either exotoxins or endotoxins which may be heat-stable or heat-labile and cause severe enteric and gastro-intestinal diseases for both human and animals. On the other hand, toxins of moulds which are called mycotoxins and specially aflatoxins may cause liver cancer in man. Also, some organisms may invade the internal human tissues and reach blood stream and cause damage to some organs such as the brain.

Effective methods of food preservation had been the subject of research since the early civilizations. Our modern world with its rural production and urban consumpsion of foods has caused an increase in this field. The continuing crises in our world food supply dictate that spoilage must be reduced as much as possible.