ENHANCING RESOLVING POWER OF SHALLOW SEISMIC MEASUREMENTS FOR ENGINEERING SITE EVALUATION WITH APPLICATION IN SOME NEW DESERT CITIES IN EGYPT

THESIS

Submitted to the Faculty of Science Ain Shams University for the Degree of Philosophy Doctor

(PH. D.)

In Geophysic

Ву

HOSSAM EL DIN GAMAL MOHAMMED

(B. SC., M. SC.)

Geophysics

Prof. Dr. Nasser M. H. Abu Ashour Head of Geophysics Department, Faculty of Science, Ain Shams Univ. Prof. Dr. Mahdy M. A. Abdel Rahman Geophysics Department, Faculty of Science, Ain Shams University.

Dr. Mohamed Roshdy

Lecturer of Physics in Physics Department, Faculty of Science, Ain Shams University.

> Geophysics Department, Faculty of Faculty of Science, Ain Shams University.

> > Cairo 1997

ENHANCING RESOLVING POWER OF SHALLOW SEISMIC MEASUREMENTS FOR ENGINEERING SITE EVALUATION WITH APPLICATION IN SOME NEW DESERT CITIES IN EGYPT

THESIS

Submitted to the Faculty of Science Ain Shams University for the Degree of Philosophy Doctor

(Ph. D.)

In Geophysics

Вy

HOSSAM EL DIN GAMAL MOHAMMED
(B. SC., M.SC.)

IN

Geophysics

Geophysics Department Faculty of Science Ain Shams University

Cairo

1997

Contents	Page No.
Acknowledgements	i.
List of Contents	iii
List of Figures	γi
CHAPTER I: INTRODUCTION	1
Seismic Refraction	2
Seismic Reflection	3
Seismic Tomography	3
Seismo-Technical Parameters of Foundation Materials	3
Location and Geology of Studied Areas	4
1- El-Obour New City	7
2- Anshas area	7
3- El-Minya New City	10
4- Aswan New City	10
CHAPTER II : SEISMIC DATA ACQUISITION	14
II. 1. Introduction	14
II. 2. Types of Seismic Arrays	15
A) In-Line Spreads.	16
B) Detailed Spread	16
C) Cross Spread	18
D) Fan Spread	19
E) Broad-Side Spread	20
II. 3. Generation of Seismic Waves	21
II. 3. 1. P-wave Energy Sources.	22
II. 3. 1. I. Sledgehammer	22
II. 3. 1. 2. Pneumatic Horn	23
II. 3. 2. S-wave Energy Sources.	26
II. 4. Detection of Seismic Waves	27
II. 4. 1. Recording Instrument	30
CHAPTER III : REFRACTION SEISMIC	32
INTERPRETATION PROCEDURES	20
III. 1. Introduction	32
III. 2. Principles of Seismic Refraction	33
III. 3. Time Intercept Method (TIM)	36
III. 3. 1. Two Layer Case	36
III. 3. 2. Multilayer Case	40
III. 3. 3. Two Layer Case With Dipping Interface	46
III. 3. 4. Multiple Dipping Refractors	50

Contents	Page No.
III. 4. Delay Time and Ray-Tracing Method	52
III. 5. Generalized Reciprocal Method (GRM)	63
III. 5. 1. Velocity Analysis Function	64
III. 5. 2. Generalized Time-Depth	65
III. 5. 3. Depth Conversion Factor	66
III. 5. 4. The Optimum XY Value	67
III. 5. 5. The Optimum XI value III. 5. 5. The Average Velocity	69
III. 5. 6. Undetected (Blind) Layer	70
CHAPTER IV: DATA ACQUISITION AND	74
INTERPRETATION	
IV. 1 .Introduction.	74
IV. 2. Data Analysis and Results.	76
IV. 2. 1. Construction of T-X Curves.	76
IV. 2. 2. Construction of Velocity analysis curves	
for GRM	77
IV. 2. 3. Determination of the Optimum XY Value.	77
IV. 2. 4. Construction of Time-Depth Function	
curves for GRM	78
IV. 3. Interpretation of the Seismic Profiles.	79
IV. 3.1. Al-Ohour First Zone.	79
IV. 3.2. Ain Shams University "Al-Obour area".	115
IV. 3.3. Anshas area	163
IV. 3.4. El Minya New City.	183
IV. 3.5. Aswan New City	215
CHAPTER V: SEISMIC TOMPOGRAPHY	229
V. 1. Introduction	229
V. 2. Types of seismic Tomography	231
V. 2. 1. Seismic Imaging Using Transmission	221
Tomography	231
V. 2. 2. Seismic Imaging Using Polynotian Toppography	222
Refraction Tomography	233 234
V. 3. Algebric Reconstruction Technique (ART)	234
V. 4. Conjugate Gradient Method	236
V. 5. Field Project In Tomography	231

	6	Contents		Page No
CHAPTER	VI:	ROCK	MECHANICAL	
PROPERTIE		100011		279
	. L. Introdu	ction		279
	2. Elastic l			281
		1. Poisson's Ra	dio -	281
	VI. 2.	2. Kinetic Rigia	lity Modulus	289
		3. Kinetic Youn	-	296
		4. Kinetic Bulk	• •	303
	VI. 2.	5. Standard Pe	netration test (SPT) or N-	
		Value	,	310
VI.	3. Materia	Competence S	Scales	317
		1. The Material		317
	VI. 3.	2. Concentratio	on Index	329
	VI. 3.	3. Stress Ratio		338
VI.	4. Foundat	tion Material Be	earing Capacity	348
	VI. 4.	1. Ultimate Bea	ring Capacity	348
	VI. 4.	2. Allowable Be	earing Capacity	356
VI.	5. Interrela	ation Between	Physical Properties of	
			eld and That Measured Ir	
	Labor	atory		363
	VI. 5.	1. Relation Bet	ween Vp and Vs	367
	VI. 5.	2. Relation Bet	tween Vs/Vp Ratio	
		and Porosity	-	369
	VI. 5.	3. Relation Bet SPT	ween N-Value and	369
CHAPTER V	II: SUA	MMARY A	1 <i>ND</i>	
	CON	VCLOSION	S	373
Appendixes				382
REFERENCE	ES.			385

ARABIC SUMMARY

	List of Figures	Page No
Fig.(I.1)	Location of study areas.	6
Fig.(1.2)	Location of Al-Obour New City.	8
Fig.(I.3)	Location of Anshas area.	9
Fig.(I.4)	Location of El-Minya area.	11
Fig.(1.5)	Location of Aswan area.	12
Fig.(II.1)	In-Line Spread.	16
Fig.(II.2)	Detailed Spread.	17
Fig.(II.3)	Cross Spread.	18
Fig.(II.4)	Fan Spread.	19
Fig.(II.5)	Broad Side Spread.	20
Fig.(II.6)	Sledgehammer as a source.	22
Fig.(11.7)	Penumatic Horn as a source.	23
Fig.(II.8)	Two seismograms at the same layout	
	a) Sledgehammer as a source b)Penumatic Horn as a source.	25
Fig.(11.9)	Shear wave energy source.	27
Fig.(H.10)	Summation of oppositely polarized SH- wave traces for removal	
	of P-wave phase.	29
Fig.(II.11)	Recording instrument.	30
Fig.(III.1)	Raypath diagrams illustrating the terms in Snell's Law	
	(Lankestron, 1994).	35
Fig.(III.2)	Cross-section of ideal two-layer earth and critical refracted	
	raypath (Donbrin, 1976).	37
Fig.(III.3)	Time-distance graph and direct critically refracted raypaths in the	
	ideal two-layer case (Lankestron, 1994).	40
Fig.(III.4)	Raypath diagram for critically refracted ray in a four-layer earth	
	(Lankestron, 1994).	41
Fig.(III.5)	Travel time curves demonstrating the effect of the thickness of	
	the second layer h2 on the appearance of the first break based on	
**** **** **	time-distance curves (after Lankestron, 1994).	45
Fig.(III.6)	Raypath diagram and travel time curves for the forward direction	
	(A to C) and reverse direction (B to C) experiments (after	47
E:- (III 7)	Lankestron, 1994).	47
Fig.(III.7)	Field record (a) and the corrsponding time-distance graph (b).	49
Fig.(III.8)	Four-layer earth with dipping, planar refractors showing	
	parameters in Palmer's derivation of the travel time equation	
E' (III 0)	(after Palmer, 1980).	51
Fig.(III.9)	Definition of delay time (after Redpath, 1973).	52
Fig.(III.10)	Schematic diagram of reversed seismic line and delay-time	
Ein (III 11)	method of depth determination (after Redpath, 1973).	58
Fig.(III.11)	Three layer case showing travel paths of the arrivals and	
	corresponding Time-Distance curve. (after Redpath, 1973)	62

Fig.(III.12)	A Schematic diagram of parameters used in the computation of	
	Time-Depth and Velocity analysis function (after Palmer, 1991).	64
Fig.(111.13)	Chart of the computer program.	73
Fig.(IV.1)	Location map of the seismic profiles at Al-Obour first zone.	81
Fig.(IV.2)	Recorded seismograms of <i>P</i> -wave along the <i>profile I</i>	
	(Al-Obour first zone).	82
Fig.(IV.3)	Recorded seismograms of S-wave along the profile I	
	(Al-Obour first zone).	83
Fig.(IV.4)	Recorded seismograms of P-wave along the profile II	
	(Al-Obour first zone).	84
Fig.(IV.5)	Recorded seismograms of S-wave along the profile II	
	(Al-Obour first zone).	85
Fig.(IV.6)	Recorded seismograms of P-wave along the profile III	
	(Al-Obour first zone).	86
Fig.(IV.7)	Recorded seismograms of S-wave along the profile III	
	(Al-Obour first zone).	87
Fig.(IV.8)	Recorded seismograms of P-wave along the profile IV	
	(Al-Obour first zone).	88
Fig.(IV.9)	Recorded seismograms of S-wave along the profile IV	
	(Al-Obour first zone).	89
Fig.(IV.10)	Time distance curve of <i>P</i> -wave for <i>profile I</i>	92
Fig.(IV.11)	Time distance curve of <i>P</i> -wave for <i>profile II</i>	92
Fig.(IV.12)	Time distance curve of <i>P</i> -wave for <i>profile III</i>	93
Fig.(IV.13)	Time distance curve of <i>P</i> -wave for <i>profile IV</i>	93
Fig.(IV.14)	Time distance curve of S-wave for profile I	94
Fig.(IV.15)	Time distance curve of S-wave for profile II	94
Fig.(IV.16)	Time distance curve of S-wave for profile III	95
Fig.(IV.17)	Time distance curve of S-wave for profile IV	95
Fig.(IV.18)	Velocity analysis of the first refractor for profile I	97
Fig.(IV.19)	Velocity analysis of the first refractor for profile II	97
$Fig.(IV,2\theta)$	Velocity analysis of the first refractor for profile III	98
Fig.(IV.21)	Velocity analysis of the first refractor for profile IV	98
Fig.(IV.22)	Velocity analysis of the second refractor for profile I	99
Fig.(IV.23)	Velocity analysis of the second refractor for profile II	99
Fig.(IV.24)	Velocity analysis of the second refractor for profile III	100
Fig.(IV.25)	Velocity analysis of the second refractor for profile IV	100
Fig.(IV.26)	Time depth function of the first refractor for profile I	102
Fig.(IV.27)	Time depth function of the first refractor for profile II	102
Fig.(IV.28)	Time depth function of the first refractor for profile III	100
Fig.(IV.29)	Time depth function of the first refractor for profile IV	103
Fig.(IV.30)	Time depth function of the second refractor for profile l	104
Fig (IV 31)	Time dunth function of the second refractor for modile II	10

Fig.(IV.32)	Time depth function of the second refractor for profile III	105
Fig.(IV.33)	Time depth function of the second refractor for profile IV	105
Fig.(IV.34)	Geoscismic cross section along profile I (Al-Obour first zone)	111
Fig.(IV.35)	Geoseismic cross section along profile II (Al-Obour first zone)	112
Fig.(IV.36)	Geoseismic cross section along profile III (Al-Obour first zone)	113
Fig.(IV.37)	Geoseismic cross section along profile IV (Al-Obour first zone)	114
Fig.(IV.38)	Location map of the seismic profiles at proposed location of Ain	
	Shams University "Al-Obour area".	117
Fig.(IV.39)	Recorded seismograms of P-wave along the profile V	
	(Ain Shams Univ. Al-Obour area).	118
Fig.(IV.40)	Recorded seismograms of S -wave along the <i>profile</i> V	
	(Ain Shams Univ. Al-Obour area).	119
Fig.(IV.41)	Recorded seismograms of <i>P</i> -wave along the <i>profile VI</i>	
	(Ain Shams Univ. Al-Obour area).	120
Fig.(IV.42)	Recorded seismograms of S-wave along the profile VI	
	(Ain Shams Univ. Al-Obour area).	121
Fig.(IV.43)	Recorded seismograms of <i>P</i> -wave along the <i>profile VII</i>	
	(Ain Shams Univ. Al-Obour area).	122
Fig.(IV.44)	Recorded seismograms of S-wave along the profile VII	
	(Ain Shams Univ. Al-Obour area).	123
Fig.(IV.45)	Recorded seismograms of P-wave along the profile VIII	
	(Ain Shams Univ. Al-Obour area).	124
Fig.(IV.46)	Recorded seismograms of S-wave along the profile VIII	
	(Ain Shams Univ. Al-Obour area).	125
Fig.(IV.47)	Recorded seismograms of <i>P</i> -wave along the <i>profile IX</i>	
E' (FF 40)	(Ain Shams Univ. Al-Obour area).	126
Fig.(IV.48)	Recorded seismograms of S-wave along the profile IX	107
E: (III (0)	(Ain Shams Univ. Al-Obour area).	127
Fig.(IV.49)	Recorded seismograms of P -wave along the profile X	100
Ela (II/ 50)	(Ain Shams Univ. Al-Obour area).	128
Fig.(IV.50)	Recorded seismograms of S-wave along the <i>profile X</i>	129
Fig.(IV.51)	(Ain Shams Univ. Al-Obour area).	
Fig.(IV.52)	Time distance curve of P -wave for profile V	133
	Time distance curve of <i>P</i> -wave for <i>profile VI</i>	133
Fig.(IV.53)	Time distance curve of <i>P</i> -wave for <i>profile VII</i>	134
Fig.(IV.54)	Time distance curve of <i>P</i> -wave for <i>profile VIII</i>	134
Fig.(IV.55)	Time distance curve of P -wave for profile IX	135
Fig.(IV.56)	Time distance curve of P -wave for profile X	135
Fig.(IV.57)	Time distance curve of S -wave for profile V	136
Fig.(IV.58)	Time distance curve of S-wave for profile VI	136
Fig.(IV.59)	Time distance curve of S-wave for profile VII	137

Fig.(IV.60)	Time distance curve of S-wave for profile VIII	137
Fig.(IV.61)	Time distance curve of S-wave for profile IX	138
Fig.(IV.62)	Time distance curve of S-wave for profile X	138
Fig.(IV.63)	Velocity analysis of the first refractor for profile V	140
Fig.(IV.64)	Velocity analysis of the first refractor for profile VI	140
Fig.(IV.65)	Velocity analysis of the first refractor for profile VII	141
Fig.(IV.66)	Velocity analysis of the first refractor for profile VIII	141
Fig.(IV.67)	Velocity analysis of the first refractor for profile IX	142
Fig.(IV.68)	Velocity analysis of the first refractor for profile X	142
Fig.(IV.69)	Velocity analysis of the second refractor for profile VI	143
Fig.(IV.70)	Velocity analysis of the second refractor for profile VIII	143
Fig.(IV.71)	Velocity analysis of the second refractor for profile IX	144
Fig.(IV.72)	Velocity analysis of the second refractor for profile X	144
Fig.(IV.73)	Time depth function of the first refractor for profile V	146
Fig.(IV.74)	Time depth function of the first refractor for profile VI	146
Fig.(IV.75)	Time depth function of the first refractor for profile VII	147
Fig.(IV.76)	Time depth function of the first refractor for profile VIII	147
Fig.(IV.77)	Time depth function of the first refractor for profile IX	148
Fig.(IV.78)	Time depth function of the first refractor for profile X	148
Fig.(IV.79)	Time depth function of the second refractor for profile VI	149
Fig.(IV.80)	Time depth function of the second refractor for profile VIII	149
Fig.(IV.81)	Time depth function of the second refractor for profile IX	150
Fig.(IV.82)	Time depth function of the second refractor for profile X	150
Fig.(IV.83)	Geoseismic cross section along profile V	
	(Ain Shams Univ. Al-Obour area)	157
Fig.(IV.84)	Geoseismic cross section along profile VI	
*** ******	(Ain Shams Univ. Al-Obour area)	158
Fig.(IV.85)	Geoseismic cross section along profile VII	
E: (XIZ.02)	(Ain Shams Univ. Al-Obour area)	159
Fig.(IV.86)	Geoseismic cross section along profile VIII	1.60
E!~ (11/ 07)	(Ain Shams Univ. Al-Obour area)	160
Fig.(IV.87)	Geoseismic cross section along profile 1X	1.61
Fig.(IV.88)	(Ain Shams Univ. Al-Obour area)	161
rig.(1v.00)	Geoseismic cross section along profile X	162
Fig.(IV.89)	(Ain Shams Univ. Al-Obour area)	102
1 ig.(17.02)	Recorded seismograms of <i>P</i> -wave along the <i>profile XI</i>	166
Fig.(IV.90)	(Anshas area).	100
1 ig.(17 .70)	Recorded seismograms of <i>P</i> -wave along the <i>profile XI</i>	167
Fig.(IV.91)	(Anshas area).	107
* 18.(11.71)	Recorded seismograms of <i>P</i> -wave along the <i>profile XI</i>	168
Fig.(IV.92)	(Anshas area).	108
1 1g.(1V.92)	Recorded seismograms of <i>P</i> -wave along the <i>profile XII</i>	

	(Anshas area).	169
Fig.(IV.93)	Recorded seismograms of P-wave along the profile XII	
	(Anshas area).	170
Fig.(IV.94)	Recorded seismograms of <i>P</i> -wave along the <i>profile XII</i>	
	(Anshas area).	171
Fig.(IV.95)	Time distance curve of <i>P</i> -wave for <i>profile XI</i>	172
Fig.(IV.96)	Time distance curve of P -wave for profile XII	172
Fig.(IV.97)	Time distance curve of S-wave for profile XI	173
Fig.(IV.98)	Time distance curve of S-wave for profile XII	173
Fig.(IV.99)	Velocity analysis of the first refractor for profile XI	175
Fig.(IV.100)	Velocity analysis of the first refractor for profile XII.	175
Fig.(IV.101)	Velocity analysis of the second refractor for profile XI	176
Fig.(IV.102)	Velocity analysis of the second refractor for profile XII	176
Fig.(IV.103)	Time depth function of the first refractor for profile XI	177
Fig.(IV.104)	Time depth function of the first refractor for profile XII	177
Fig.(IV.105)	Time depth function of the second refractor for profile XI	178
Fig.(IV.106)	Time depth function of the second refractor for profile XII	178
Fig.(IV.107)	Geoseismic cross section along profile XI (Anshas area).	181
Fig.(IV.108)	Geoseismic cross section along profile XII (Anshas area).	182
Fig.(IV.109)	Location map of the seismic of the seismic profiles at proposed	
	location of El-Minya New City.	184
Fig.(IV.110)	Recorded seismograms of <i>P</i> -wave along the <i>profile XIII</i>	
	(El-Minya New City).	185
Fig.(IV.111)	Recorded seismograms of <i>P</i> -wave along the <i>profile XIV</i>	
	(El-Minya New City).	186
Fig.(IV.112)	Recorded seismograms of <i>P</i> -wave along the <i>profile XV</i>	
	(El-Minya New City).	187
Fig.(IV.113)	Recorded seismograms of <i>P</i> -wave along the <i>profile XVI</i>	
	(El-Minya New City).	188
Fig.(IV.114)	Recorded seismograms of <i>P</i> -wave along the <i>profile XVII</i>	
	(El-Minya New City).	189
Fig.(IV.115)	Recorded seismograms of <i>P</i> -wave along the <i>profile XVIII</i>	
	(El-Minya New City).	190
Fig.(IV.116)	Time distance curve of P -wave for profile XIII	194
Fig.(IV.117)	Time distance curve of P -wave for profile XIV	194
Fig.(IV.118)	Time distance curve of P -wave for profile XV	195
Fig.(IV.119)	Time distance curve of P -wave for profile XVI	195
Fig.(IV.120)	Time distance curve of <i>P</i> -wave for <i>profile XVII</i>	196
Fig.(IV.121)	Time distance curve of <i>P</i> -wave for <i>profile XVIII</i>	196
Fig.(IV.122)	Velocity analysis of the first refractor for profile XIII	198
Fig.(IV.123)	Velocity analysis of the first refractor for profile XIV	198
Fig.(IV.124)	Velocity analysis of the first refractor for profile XV	199

Fig.(IV.125)	Velocity analysis of the first refractor for profile XVI	199
Fig.(IV.126)	Velocity analysis of the first refractor for profile XVII	200
Fig.(IV.127)	Velocity analysis of the first refractor for profile XVIII	200
Fig.(IV.128)	Time depth function of the first refractor for profile XIII	201
Fig.(IV.129)	Time depth function of the first refractor for profile XIV	201
Fig.(IV.130)	Time depth function of the first refractor for profile XV	202
Fig.(IV.131)	Time depth function of the first refractor for profile XVI	202
Fig.(IV.132)	Time depth function of the first refractor for profile XVII	203
Fig.(IV.133)	Time depth function of the first refractor for profile XVIII	203
Fig.(IV.134)	Geoseismic cross section along profile XIII (El-Minya New City)	209
Fig.(IV.135)	Geoseismic cross section along profile XIV (El-Minya New City)	210
Fig.(IV.136)	Geoseismic cross section along profile XV (El-Minya New City)	211
Fig.(IV.137)	Geoseismic cross section along profile XVI (El-Minya New City)	212
Fig.(IV.138)	Geoseismic cross section along profile XVII (El-Minya New	
	City)	213
Fig.(IV.139)	Geoseismic cross section along profile XVIII(El-Minya New	
	City)	214
Fig.(IV.140)	Recorded seismograms of <i>P</i> -wave along the <i>profile XIX</i>	217
Fig.(IV.141)	Recorded seismograms of <i>P</i> -wave along the <i>profile XX</i>	218
Fig.(IV.142)	Time distance curve of <i>P</i> -wave for <i>profile XIX</i>	219
Fig.(IV.143)	Time distance curve of <i>P</i> -wave for <i>profile XX</i>	219
Fig.(IV.144)	Velocity analysis of the first refractor for profile IXX	221
Fig.(IV.145)	Velocity analysis of the first refractor for profile XX	221
Fig.(IV.146)	Velocity analysis of the second refractor for profile IXX	222
Fig.(IV.147)	Velocity analysis of the second refractor for profile XX	222
Fig.(IV.148)	Time depth function of the first refractor for profile XIX	223
Fig.(IV.149)	Time depth function of the first refractor for profile XX	223
Fig.(IV.150)	Time depth function of the second refractor for profile XIX	224
Fig.(IV.151)	Time depth function of the second refractor for profile XX	224
Fig.(IV.152)	Geoseismic cross section of profile XIX	227
Fig.(IV.153)	Geoseismic cross section of profile XX	228
Fig.(V.1)	Investigation procedure method by transmission.	232
Fig.(V.2)	Cell arrangement used in the algbraic reconstruction method	
	(after Kak, et al., 1988).	234
Fig.(V.3)	The filed spread used in the seismic tomography survey.	240
Fig.(V.4)	Arrangement of the cells in the dividers.	241
Fig.(V.5)	A: Seismic record of SP-1 B: Time distance curve of SP-1	224
Fig.(V.6)	A: Seismic record of SP-2 B: Time distance curve of SP-2	245
Fig.(V.7)	A: Seismic record of SP-3 B: Time distance curve of SP-3	246
Fig.(V.8)	Cell arrangement and ray path of the stage No.(1).	247
Fig.(V.9)	Velocity image of the stage No.(1).	248
Fig. (V.10)	Slowness image of the stage No.(1).	249

Fig.(V.11)	Density image of the stage No.(1).	250
Fig.(V.12)	A: Seismic record of SP-4 B: Time distance curve of SP-4	252
Fig.(V.13)	Cell arrangement and ray path of the stage No.(2).	253
Fig.(V.14)	Velocity image of the stage No.(2).	254
Fig.(V.15)	Slowness image of the stage No.(2).	255
Fig.(V.16)	Density image of the stage No.(2).	256
Fig.(V.17)	A: Seismic record of SP-5 B: Time distance curve of SP-5	258
Fig.(V.18)	Cell arrangement and ray path of the stage No.(3).	259
Fig.(V.19)	Velocity image of the stage No.(3).	260
Fig.(V.20)	Slowness image of the stage No.(3).	261
Fig.(V.21)	Density image of the stage No.(3).	262
Fig.(V.22)	A: Seismic record of SP-6 B: Time distance curve of SP-6	264
Fig.(V.23)	Cell arrangement and ray path of the stage No.(4).	265
Fig.(V.24)	Velocity image of the stage No.(4).	266
Fig.(V.25)	Slowness image of the stage No.(4).	267
Fig.(V.26)	Density image of the stage No.(4).	268
Fig.(V.27)	A: Seismic record of SP-6 B: Time distance curve of SP-6	270
Fig.(V.28)	Cell arrangement and ray path of the stage No.(5).	271
Fig.(V.29)	Velocity image of the stage No.(5).	272
Fig.(V.30)	Slowness image of the stage No.(5).	273
Fig.(V.31)	Density image of the stage No.(5).	274
Fig.(V.32)	Integrated velocity image.	276
Fig.(V.33)	Integrated slowness image	277
Fig.(V.34)	Integrated density image	278
Fig.(VI.1)	Poisson's ratio distribution of the first layer at Al-Obour first	
	zone.	283
Fig.(VI.2)	Poisson's ratio distribution of the second layer at Al-Obour first	
El alles	zone.	284
Fig.(VI.3)	Poisson's ratio distribution of the first layer at proposed location	
E" ALTE A	of Ain Shams University (Al-Obour City).	285
Fig.(VI.4)	Poisson's ratio distribution of the second layer at proposed	207
Fig.(V1.5)	location of Ain Shams University (Al-Obour City).	286
1'1g.(V1.3)	Poisson's ratio distribution of the first layer at El-Minya New City.	288
Fig.(VI.6)	Kinetic rigidity distribution of the first layer at Al-Obour first	∠00
118.(71.0)	zone.	291
Fig.(VI.7)	Kinetic rigidity distribution of the second layer at Al-Obour first	271
70 TO 11 7	zone.	292
Fig.(VI.8)	Kinetic rigidity distribution of the first layer at proposed location	2,2
G \ '-/	of Ain Shams University (Al-Obour City).	293
Fig.(VI.9)	Kinetic rigidity distribution of the second layer at proposed	
	location of Ain Shams University (Al-Obour City).	294