

ASSESSMENT OF THE VALUE OF DIPYRIDAMOLE THALLIUM-201 IN DETECTION OF CORONARY ARTERY DISEASE IN PATIENTS WITH AORTIC VALVE DISEASE

THESIS

SUBMITTED FOR PARTIAL FULFILMENT OF DOCTORATE DEGREE
IN CARDIOLOGY

PRESENTED BY

FARID FOUAD DOLHA MB. Bch, Msc

SUPERVISED BY

PROF. DR.:WAGDY GALAL
PROF. OF CARDIOLOGY
Faculty Of Medcine
Ain Shams University

PROF. DR.:RAMZY HAMED PROF. OF CARDIOLOGY Faculty Of Medicine Ain Shams University

DR.:MOHAMED AL GABLY
DIRECTOR OF
GAMMA CAMERA DEPARTMENT
National Heart Institute

FACULTY OF MEDICINE AIN SHAMS UNIVERSITY 1996

بسم اللم الرحمن الرحيم

ACKNOWLEDGEMENT

First and formest thanks to ALLAH the most benificent and merciful

- *I believe that I was lucky, to learn and work with distingushed cardiologists in Ain Shams University and National Heart Institute.
- *My particular thanks and deep appeciation to prof. Dr. Ramzy Hamed for his gracious help and kind supervision.
- *I am indebited to prof. Dr. Wagdy Galal for his continuous guidance, he patiently initiated my concepts about aortic valve disease in combination with coronary artery disease.
- *I extend my sincere gratitude to prof. Dr . Mohamed Al Gably for his indispensible directions, valuable remarks and advice .
- *Actually I am grateful to prof. Dr. Osama Hassen and prof. Dr. Salwa Sweylm, they faithfully help me.
- *It is a pleasure to acknowledge prof. Dr. Eglal Abdel Al Aziz,prof Dr. Adel Emam, prof. Dr. Maged Al Abady, prof. Dr. Mohamed Farid Al Gendy and prof. Dr. Enas Abdel Al Barry for their great assisstance and guidance.

CONTENT

I	Page
1. Abstract	1-2
2. Introduction	3-4
3. Aim of the work	4
4. Aortic valve disease & coronary artery disease	5-17
 Mechnism of angina pectoris in patients with AVD 	5
 Significanse &prevalande of angina pectoris 	7
 Incidence of coronary artery disease 	9
 Indication of coronary angiography in patients with AVD 	11
 Aortic valve replacement & combined myocardial revascularization 	1 14
5. Phamacology of dipyridamole	8-25
 Phamacokinetics 	18
Phamacological action	19
Dipyridamole effect on coronary circulation	20
Adverse effect of intravenous dipyridamole	23
 Aminophylline the antidote of dipyridamole 	24
6. Dipyridamole echocardiography 2	6-43
Stress echcardiography in clinical practice	26
Diopyridamole stress echocardiography	27
Safety of dipyridamole stress echocardiography	29
Other forms of dipyridamole stress echocardiography	30
 Clinical results of dipyridamole stress echocardiography 	31
Doobutamine stress echocardiography	34
Dipyridamole versus dobutamine stresss echcardiography	36
Adinosine stress echocardiography	37
Exercise stress echocardiography	38
7. Dipyridamole thallium-201 scintigraphy 44	1-65
Myocardial kinetics of thallium-201	44
• Clinical value of regional myocardial thallium washout rate analysis	s 47
Prptocols of treadmill	48
Imaging protocols	49
• Thallium-201 image aquisition protocols	50
Generation of normal limit profiles	51
 Assignment of different portions of LV to specific coronary arteries 	51
Visual analysis of the studies	52
Artifact pattern	53
Ouantitative analysis	54

 Clinical application of thallium-201 scintigraphy 	55
Dipyridamole thallim-201 scintigraphy	61
8. Patients and methods	66-74
9. Results	75-113
10.Discussion	113-128
11.Summary	129-131
12. Conclusion	132
13.Master tables	133-144
14.Refernces	145-173
15.Arabic summary	1-3

ABSTRACT

ASSESSMENT OF THE VALUE OF DIPYRIDAMOLE THALLIUM-201 TOMOGRAPHY IN DETECTION OF CORONARY ARTERY DISEASE IN PATIENTS WITH AORTIC VALVE DISEASE

*In many patients with aortic valve disease, management decision may be possible without invasive studies if coexistent coronary artery disease can be ruled out noninvasively. The use of thallium-201 single-photon emission computerized tomography to the detection of coronary artery disease, was studied in 50 patients with aortic valve disease, divided into 3 group. Group (1) included 12 patients with severe aortic regurgitation with a mean age of 56 ± 5 ys, group (2) included 14 patients with combined aortic stenosis and regurgitation with a mean age of 56 ± 5 ys, group (3) included 24 patients with severe aortic stenosis and mean age of 59 ± 5 ys. In addition to cardiac catheterization and selective coronary angiography, patients underwent complete echocardiographic study, dipyridamole echocardiography and dipyridamole thallium-201 scintigraphy.

*Two patients in each group had angiographically significant coronary artery disease (≥ 50 % diameter stenosis in ≥ 1 coronary artery). Each patient with significant coronary artery disease had abnormal thallium-201 tomogram, either strictly segmental perfusion defect or a patchy non-segmental abnormalities. Four patients in group (1), two patients in group (2) and three patients in group (3) free of significant coronary artery disease also had abnormal thallium-201 tomogram. Thus the sensitivity and specificity of abnormal thallium-201 tomogram, in detection of significant coronary artery disease was 100% and 60% respectively in group (1), 100% and 83% respectively in

group (2) and 100% and 86% respectively in group (3). Among the results of dipyridamole echocardiography, only one of the six patients with coronary artery disease "patient NO 8 in group (2)", had normal wall motion pattern while the other five patients had abnormal wall motion pattern. Also five patients in group (1), three patients in group (2) and five patients in group (3) free of significant coronary artery disease had abnormal wall motion pattern . Thus the sensitivity and specificity of dipyridamole echocardiography, in detection of significant coronary artery disease was, 100% and 50% respectively in group (1), 50% and 77% respectively in group (2) and 100% and 77% respectively in group (3). Thus dipyridamole thallium-201 scintigraphy and dipyridamole echocardiography, appear to be usueful noninvasive diagnostic tests for detection of coronary artery disease, in patients with a ortic valve disease, with a higher sensitivity and specificity for dipyridamole thallium-201 scintigraphy compared with dipyridamole echocardiography.

INTRODUCTION AND AIM OF THE WORK

INTRODUCTION

- *Patients with aortic valve disease represent an important group of patients with valvular heart diseases who by themselve represent a major group of cardiac patients in our community
- *Aortic valve disease includes aortic stenosis, aortic regurgitation and combined aortic stenosis and regurgitation. Aortic stenosis is usually either congenital or degenerative in origin, less commenly it can be acquired as a result of rheumatic fever. Aortic regurgitation can be due to valvular disease in which rheumatic fever is the most common cause or due to aortic root disease which now account for more than one-third of all patients with aortic regurgitation "Waller 1986".
- *Angina pectoris occurs in approximately two-third of patients with critical aortic stenosis but it occurs less frequently in patients with aortic regurgitation "Hakki et al 1980". However angina pectoris is an unreliable marker of coronary artery disease and its absence does not exclude coronary artery disease "Coleman and Soloff 1976".
- *Recent development in Doppler echocardiography have realized a fully noninvasive assessment of the severity of aortic valve disease "Miller 1989"
- *Provided that coexistent coronary artery disease could be excluded without angiography, mangement decision could be made without cardiac catheterization in a significant proportion of patients. Thallium-201 scintigraphy is a sensitive and specific method for detecting angiographically important coronary artery disease "Iskandrian and Hakki 1985".

*Dipyridamole infusion is a safe testing method that does not usually induce clinically evident myocardial ischemia but result in flow difference that discriminate stenotic from nonstenotic coronary arteries "Sorenson et al 1985".

*Dipyridamole thallium-201 and exercise thallium-201 have shown to be equally sensitive and specific in the assessment of coronary artery diseae "Castello and Labovitz 1992".

AIM OF THE WORK

The aim of this work is the assessment of the value of dipyridamole thallium-201 scintigraphy as a noninvasive test for detection or exclusion of coronary artery disease in patients with aortic valve disease.