AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

ELECTRICAL POWER AND MACHINES DEPARTMENT

Short - Term Economic Operation of a Power System with Unconventional Energy Sources

A Thesis

Submitted in Partial Fulfillment of the Requirements of the Degree of Master of Science in Electrical Engineering

BY SAMEH SAAD MAHMOUD

B.Sc. Elec. Eng., Alexandria University, 1911, High Dip.Elec.Eng., Ain Shams University, 1990

621.3121

Supervised by

Prof. Dr. A. K. Al-Kharashi

Elec.Power and Mach.Dept., Faculty of Engineering, Ain Shams
University

Dr. S. A. Soliman

Elec.Power and Mach.Dept., Faculty of Engineering, Ain Shams
University

Dr. H. A. E. Younis

Vice Chairman of Egyptian Electricity Authority

CAIRO 1993

EXAMINERS COMMITTEE

Name. Title & Affiliation

Signature

1- Prof. Dr. E.A. Kandil
 Professor, Dept. of Elect. Power & Machines
 Faculty of Engineering, Ain Shams University

E5.Kachl

2- Dr. T.A. El- Tablawi
Vice Chairman
The Holding Company for Constructions &
Electrical Industries

T. El Tablay

3- Prof. Dr. A.K. El- Kharashi
Professor, Dept. of Elect. Power & Machines
Faculty of Engineering, Ain Shams University

Thanshi 22.4.93

4- Dr. H.A.E. Younis

Vice Chairman

Egyptian Electricity Authority

H. 12-493

STATEMENT

This dissertation is submitted to Ain Shams University for the degree of Master in Electrical Engineering.

The work included in this thesis was carried out by the author. No part of this thesis has been submitted for a degree or a qualification at other university or institution.

Date: 15/4/93

Signature: Sameh Saad Mahmoud

Name: Sameh Saad Mahmoud

ACKNOWLEDGEMENT

The author would like to thank Prof. Dr. A. K. Al-Kharashi so much for all he has done for him. His encouragement and fruitful remarks will always guide him in his future life.

The author has the honour to dedicate this modest thesis to Prof. Dr. A. K. Al-Kharashi, thanking him for all the efforts he has exerted so that it could be finished.

The author can hardly find the words to express his thankfulness, appreciation and gratitude for all the help and the useful guidance Dr. soliman and Dr. Hassan Younis offered him during their supervision. He will be always indebted to them and will never forget their care.

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING ELECTRICAL POWER AND MACHINES DEPARTMENT

SUMMARY

Of The M.Sc. Thesis titled: Short-term economic operation of a power system with unconventional energy sources

Prepared by : Eng. Sameh Saad Mahmoud

Supervised by : Prof. Dr. A. K. Al-Kharashi

Dr. S. A. Soliman

Dr. H. A. E. Younis

The thesis presents a method for solving the short-term economic operation in a small autonomous power system having conventional and unconventional energy sources and storage batteries.

The system of generation consists of diesel generators, wind turbine generators and photovoltaic panels.

This system is quite suitable to be installed in the new settlements in the canal zone and the Red sea coast, where a major irrigation program calls for the development of 140,000 feddans in the year 2000 within this zone.

Development plans have been made for these settlements where the population is projected to rise to more than three million inhabitants in the year 2000. On the other hand, these settlements lie in the zones which have a large average annual wind velocity and a large average annual solar energy intensity.

ABSTRACT

The first part of this dissertation entailed modelling and analysis of the unconventional energy sources and storage batteries. A set of optimal control equations is obtained for each source. The scheduling problem is formulated as a constrained optimization problem, and the steps of solving this problem are explained with their corresponding algorithms. The optimum operation of each resource on an hourly basis is computed.

The proposed method is implemented to a power system of an isolated farm including 1000 feddans and other small size agricultural industries in a location near *Hurghada* in the Red sea coast.

TABLE OF CONTENTS

	Page
Acknowledgement	IV
Summary	V
Abstract	VI
Table of Contents	VII
List of Figures	XIV
List of Tables	XIX
List of Symbols	XXI
CHAPTER 1 : INTRODUCTION	1
1.1 General	1
1.2 Thesis objectives	2
1.3 Approach to the problem	2
1.4 System operational features identification	4
CHAPTER 2 : SYSTEM DESCRIPTION	5
2.1 System description	5
2.1.1 The diesel plant	5
2.1.2 The wind park	7
2.1.3 The solar plant	8
2.1.4 The storage battery	9
2.1.5 The solar plant- battery- converter combination	10
2.1.6 The solar plant transformer	12

2.2	Load profile development	13
chapt	ter 3: ECONOMICS OF RENEWABLE ENERGIES & THE FEATURES OF THEIR AVAILABILITY IN EGYPT.	19
3.1	Economics of renewable energies	19
3.2	Photovoltaic systems	20
3.3	Wind energy	21
3.3.1	Future possibilities of wind energy	22
3.3.2	2 Economics of wind energy	23
3.4	Hybrid systems	23
3.5	The features of renewable energies availability in Egypt	24
3.5.	The general features of solar radiation availability in Egypt	24
3.5.	The general features of the available wind speed in Egypt	25
Chap	ter 4 : MODELLING AND ANALYSIS OF SOLAR ENERGY	28
4.1	General	28
4.2	Photovoltaic power generation	29
4.2.	1 Solar cell construction	31
4.2.	•	31
	-voltage relationship.	
4.2.		34
4.2.	4 Basic cell characteristics	38

VIII

4.3	Solar array models and configuration factors	40
4.4	Power conditioning and storage Arrangements	45
4.4.1	Voltage and current regulation	48
4.4.2	Maximum power tracking regulator	49
4.4.3	Direct energy transfer system.	49
4.4.4	DC/AC Inverters	50
4.5	Solar radiation profile development	51
4.5.1	Solar radiation geometry	53
4.5.2	Sunrise, sunset, and day length.	60
4.5.3	Apparent motion of the sun	61
4.6	Calculating the optimum tilt angle	63
4.7	Determination of the solar plant power output at different scheduling intervals	64
4.8	Separation of insolation data on horizontal surface	66
4.9	Insolation intensity on a tilted surface.	66
4.10	Evaluation of the electrical power output	71
4.11	Determination of the solar plant arrangement	73
СНАРТЕ	ER 5 : MODELLING AND ANALYSIS OF WIND ENERGY	76
5.1	Introduction	76
5.2	Wind characteristics.	81
1	W1.331-4114h h-14	o t

5.2.2	Wind speed statistics	82
5.2.3	Statistical representation of wind speed frequency curve	85
5.3	Power output from an ideal turbine	90
5.4	Aero dynamics	95
5.4.1	The important parameters of the blade	98
5.5	Power output from practical turbines	99
5.6	Transmission and generator efficiencies	102
5.6.1	Transmission efficiency ym	103
5.6.2	Generator efficiency	104
5.7	Model wind turbine output versus wind speed	106
5.8	Energy production and capacity factor	109
5.9	Wind turbine types and performance	119
5.9.1	Wind turbine types	119
5.9.2	Performance of wind turbines	132
5.10	Determination of the wind park output	135
5.10.1	Wind speed characteristics of the site	137
5.10.2	Modelling of the wind speed frequency curve and	
	determination of the weibull parameters $$ C and $$ K	139
5.10.3	Selection of rated wind speed	140
5.11	Modelling of the wind turbine generator power output versus wind velocity characteristic	
	by second degree polynomial	146

CHAPTE	R 6 : STORAGE BATTERIES	152
6.1	General	152
6.2	Basic structure of lead acid battery	153
6.3	Discharge and charging of the battery	153
6.4	Variation of the acid,s density during charge	
	and discharge	155
6.5	Important parameters of the battery	158
6.6	Capacity of the cell	159
6.7	Effect of temperature on the action of the cell	160
6.8	Cell's efficiency	160
6.9	Cell's weight	160
6.10	Mathematical model for lead-acid-batteries	161
6.10.1	Battery equivalent circuit	162
6.10.2	Battery capacity	163
6.10.3	Internal resistance	163
6.10.4	Self-discharge resistance	164
6.10.5	Over voltage	164
6.11	Analytical model of the accumulator	166
6.12	The ampere-hour rating	167
(12	Determination of the storage battery capacity	168

CHAPTE	ER 7 : MATHEMATICAL FORMULATION OF THE PROBLEM	171
7.1	Problem statement	171
7.2	Mathematical formulation of the problem	171
СНАРТЕ	ER 8 : SOLUTION OF THE PROBLEM.	175
8.1	Introduction	175
8.1.1	Economic dispatch of thermal units and methods of solution	175
8.1.2	Optimal dispatch of diesel units with generator limits included	179
8.1.3	Computing the total fuel cost of the diesel plant	180
8.2	Solution of the problem	183
8.3	Construction of the diesel units priority list	184
8.4	Computation of the optimal dispatch between the diesel plant and the wind park	188
8.4.1	Iteration method	188
8.4.2	Normal calculations method	196
8.5	Computation of the optimal battery storage policy, optimal solar plant power output, and optimal diesel plant power output	199
8.6	Computing of the optimal dispatch and commitment of the diesel units, and the total fuel cost of	
	the diesel plant	205

CHAPTER	9 : CONCLUSIONS	208
9.1	Achievements	208
9.2	Conclusions	208
9.3	Recommendations	213
REFEREN	CES	217
APPENDI	CES	221
Ap	pendix A	221
Ap	pendix B	228
An	nendix C	237

LIST OF FIGURES

Figu	re	Page
2.1	The generation system of a small autonomous power system.	6
2.2	Converter efficiency as a function of the power delivered by the converter.	11
2.3	Load profile forecasting.	18
3.1	Cost/ Benefit analysis of introducing wind -mills with diesel units.	24
3.2	Average annual solar energy intensity in Egypt.	26
3.3	Annual values of average wind power in Egypt.	27
4.1	Solar cell construction.	31
4.2	Equivalent circuit of a solar cell.	31
4.3	Typical I-V curve for an ideal solar cell.	34
4.4	Characteristics $V = f(I)$ of the solar cell together with the curves of the	
	maximum power.	37
4.5	The trends, on the average day of the reference month of V, I, and P for certain solar cell.	37
4.6	Basic cell characteristics.	39
4.7	Concepts of series and parallel connection	
	of solar cells.	40
4.8	Solar array diode applications.	42
4.9	General view of a solar power plant.	44

XIV