

Ain shams university Faculty of Engineering

OPTIMAL DESIGN OF TRUSSES WITH BUCKLING CONSTRAINTS

BY

Eng. MOHSEN FATEHY AHMAD

B.SC. Structural Divison Civil Engineering Department Ain Shams University

A THESIS SUBMITTED IN
The Partial Fulfillment of the Requirement
for the Degree of Master of Science in
Civil Engineering (Structural Engineering)

SUPERVISORS

Prof. Dr. Saafan A. Saafan Professor of Structural Engineering

Ain Shams University

Assoc. Prof. Dr. Abd El Salam A. Mokhtar

Doctor of Structural Engineering
Ain Shams University

Assoc. Prof. Dr. M. Nour Fayad

Doctor of Structural Engineering
Ain Shams University

Cairo - Egypt 1994

APPROVAL SHEET

OPTIMAL DESIGN OF TRUSSES WITH BUCKLING CONSTRAINTS

Approved by :

Prof. Dr. Sabry Samaan
Professor of Structural Engineering
Cairo University

Prof. Dr. Ahmad Abd El Monaem Korashy

Professor of Structural Engineering

Ain Shams University

Prof. Dr. Saafan A. Saafan S. A. Saafa Professor of Structural Engineering
Ain Shams University

Date:

Committée in charge

STATEMENT

This thesis is submitted to Ain Shams University for the Degree of Master of Science in Civil Engineering (Structural Engineering).

The work included in this thesis was carried out by the author in the department of structural engineering Ain Shams University form Nov. 1990 till Jan. 1994.

No part of this thesis has been submitted for a degree or a qualification .

Date: 6/3/94
Signature: Monner Fictory

Name : ENG. MOHSEN FATEHY AHMAD

DEDICATION

To My Parents

Information about the Researcher

NAME : Mohsen Fatehy Ahmmad Shoabe

Bate of Birth : 31 - 10 - 1965

Place of Birth : El - Zeitoun - Cairo

Qualifications : B.Sc. Degree in Civil Engineering

Faculty of Engineering - Ain Shams

University - 1988

Current Job : Structural Engineer in General Authority

of Educational Buildings .

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING CIVIL ENGINEERING DEPARTMENT STRUCTURAL DIVISION

Abstract of the M. Sc. Thesis submitted by ENG. MOHSEN FATEHY AHMAD

Title of Thesis OPTIMAL DESIGN OF TRUSSES WITH BUCKLING CONSTRAINTS

Supervisors

Prof. Dr. Saafan A. Saafan Assoc. Prof. Dr. Abd El Salam A. Mokhtar Assoc. Prof. Dr. M. Nour Fayed

Registration Date: 10/12/1990 Examination Date: 5/3/1994

Abstract

This thesis deals with the problem of optimizing trusses with buckling constraints. The development of structural optimization is presented with a comperehensive review of the previous researches. The mathematical basis of some common methods are explained briefly. The optimality criteria methods are introduced with a recurrence relation for Lagrange multipliers and Newton-Raphson procedure. Both approximation concepts and dual methods are displayed to increase the efficiency of solution. Several examples are solved to verify the applicability of the presented methods. Optimum design of reticulated domes is investigated taking into account the type of dome, height to span ratio, cases of loading and design formulae. The critical buckling loads are determined for the optimized domes with different height to span ratios. A brief summary, and conclusions are given. Suggestions for future extension are presented at the end.

ACKNOWLEDGEMENTS

I am exteremly grateful and thankful to GOD for his mercy and help to accomplish this work .

I wish to express my sincer thanks to Prof. Dr. Saafan A. Saafan, Professor of Structural Engineering, Ain Shams University, for his sincer supervision, guidance and encouragement.

I would like also to thank deeply both Assoc.Prof. Dr. M. N. Nour and Assoc. Prof. Dr. Abd El Salam A. Mokhtar, lecturers, Structural Engineering, Ain Shams University, for their fruitful supervision, unlimited help and their endless support throughout the course of this work, the value of which is beyond words.

CONTENTS

	Page
CHAPTER (1): INTRODUCTION	
1-1 General	1
1-2 The Design Problem	3
1-2-1 The Design Variables	4
1-2-2 The Constraints	6
1-2-3 The Objective Function	8
1-3 Object of the Work	9
1-4 Thesis Organization	10
CHAPTER (2): OPTIMUM DESIGN METHODS	
2-1 Introduction	12
2-2 Analytical Methods	12
2-3 Numerical Methods	14
2-3-1 Primal Methods	15
2-3-2 Dual Methods	16
2-3-3 Transformation Methods	16
2-4 Primal Methods	16
2-4-1 Sequential Linear Programming Method	16
2-4-2 Feasible Directions Method	19
2-4-3 Geometric Programming Method	21
2-5 Dual Methods	23
2-6 Transformation Methods	24
CHAPTER (3): OPTIMALITY CRITERIA METHOD	
3-1 Introduction	29
3-2 Literature Review	30

3-3 O	ptimality Criteria Equations	34
3-3-1	Dominance of Displacement Constraints	36
3-3-2	Dominance of Stress Constraints	37
3-3-3	Dominance of Buckling Constraints	38
3-3-4	Dominance of Displacement and	
	Stress Constraints	39
3-4 S	olution of Optimality Criteria Equations	39
3-4-1	Recurrence Relation for Lagrange Multipliers	40
(I)	Estimating Initial Values for Lagrange	
	Multipliers	41
(II)	Optimum Design Algorithm	42
3-4-2	Newton-Raphson Method	43
(I)	Recurrence Relation for Displacement	
	Constraints	45
(II)	Recurrence Relation for Stress Constraints	45
(III)	Potentially Active Constraints	46
(IV)	Scaling Process	47
(♥)	Optimum Design Algorithm	47
CHAPTER	(4): APPROXIMATION CONCEPTS AND DUAL METH	1 0DS
4-1 I	ntroduction	51
4-2 L	iterature Review	52
4-3 S	ome Approximation Concepts in Optimum Design	55
4-3-1	Linking of Design Variables	55
4-3-2	Reciprocal Design Variables	56
4-3-3	Shrinking Expanding Technique	57
4-3-4	Inequality Constraints Approximation	58
(a)	Displacement Constraints Approximation	EQ

(b) Stress Constraints Approximation	60
4-3-5 Potentially Active and Passive Constraints	61
(I) Truncated Posture Table Technique	61
(II) Arbitrary Bandwidth Technique	62
(III) Positive Lagrange Multipliers Technique	63
4-3-6 Re-analysis Technique	64
4-4 Dual Methods with Approximation Concepts	65
4-4-1 Problem Formulation	66
4-4-2 Maximization Algorithm	73
4-4-3 Optimum Design Algorithm	75
4-5 The Relation Between Optimality Criteria	
and Dual Methods	77
CHAPTER (5): NUMERICAL INVESTIGATION FOR OPTIMALITY	
CRITERIA AND DUAL METHODS	
5-1 Introduction	82
5-2 Comparative Examples	83
5-2-1 Example 1 " Four-Bar Space Truss "	83
5-2-2 Example 2 " Nine-Bar Plane Truss "	84
5-2-3 Example 3 "Ten-Bar Plane Truss "	85
5-2-4 Example 4 " Twenty two-Bar Space Truss "	86
5-2-5 Example 5 "Twenty five-Bar Space Truss "	87
5-2-6 Discussion of the Results	88
5-3 Parametric Study	89
5-4 Optimum Design of Trusses with	
Buckling Constraints	91
5-4-1 Twenty two-Bar Plane Truss	93
5-4-2 Twenty seven-Bar Plane Truss	96

5-4-3 Seventy two-Bar Space Truss	99
A- Displacement and Stress Constraints	99
B- Displacement and Buckling Constraints	100
CHAPTER (6): OPTIMUM DESIGN OF RETICULATED DOME	
STRUCTURES	
6-1 Introduction	124
6-2 Historical Development	125
6-3 Literature Review	128
6-4 Some Trends in Reticulated Dome Design	140
6-4-1 Column Free Area " Span " Consideration	140
6-4-2 Reticular Patterns Considerations	141
6-4-3 Architectural Design Considerations	141
6-4-4 Joint Selection Considerations	142
6-4-5 Design Loads Considerations	143
6-4-6 Temperature Effect	144
6-4-7 Support Considerations	145
6-4-8 Design Criteria	146
6-4-9 Material Selection Considerations	146
6-4-10 Latticed Skin Considerations	146
6-4-11 Height to Span Ratio Considerations	147
6-4-12 Structural Modeling Considerations	147
6-5 Critical Buckling Load of Reticulated Domes	148
6-6 Optimum Design of Reticulated Domes	150
6-6-1 Mathematical Models	151
6-6-2 Design Formulae	151
6-6-3 Cases of Study	153

6-6-4	Results and Discussion	154
(I)	Effect of Design Loading Conditions	155
(II)	Effect of Height to Span Ratio	156
(III)	Different Design Code Formulae	156
(IV)	Effect of Architectural Shape	157
(♡)	Critical Buckling Loads for the	
	Optimized Domes	158
CHAPTER (7): CONCLUSIONS AND SUGGESTIONS		
7-1 Cc	onclusions	181
7-2 Su	aggestions for Future Research	184
REFERENCES		
APPENDIX	(1)	
Basic def	initions in mathematical programming	195
APPENDIX	(II)	
Computer programs		

LIST OF FIGURES

Figur	e No.	f	Page	No.
Fig.	(3.1)	Flow chart for optimality criteria metho	d	49
Fig.	(3.2)	Flow chart for Newton-Raphson method		50
Fig.	(4.1)	Flow chart for second-order dual method		81
Fig.	(5.1)	4-bar space truss		112
Fig.	(5.2)	Design history of 4-bar space truss		112
Fig.	(5.3)	9-bar plane truss		113
Fig.	(5.4)	Design history of 9-bar plane truss		113
Fig.	(5.5)	10-bar plane truss		114
Fig.	(5.6)	Design history of 10-bar plane truss		114
Fig.	(5.7)	22-bar space truss		115
Fig.	(5.8)	Design history of 22-bar space truss		115
Fig.	(5.9)	25-bar space truss		116
Fig.	(5.10)	Design history of 25-bar space truss		116
Fig.	(5.11)	22-bar plane truss		117
Fig.	(5.12)	27-bar plane truss		117
Fig.	(5.13)	Design history of 22-bar plane truss		118
		(Case 1)		
Fig.	(5.14)	Design history of 22-bar plane truss		118
		(Case 2)		
Fig.	(5.15)	Design history of 22-bar plane truss		119
		(Case 3)		
Fig.	(5.16)	Design history of 22-bar plane truss		119
		(Case 4)		
Fig.	(5.17)	Design history of 22-bar plane truss		120
		(Q-Section)		
Fig.	(5.18)	Design history of 22-bar plane truss		120
		(2L-Section)		
Fig.	(5.19)	Design history of 27-bar plane truss		121
		(Q-Section)		
Fig.	(5.20)	Effect of displacement limits on opt	imal	121
		design of 22 and 27 -bar plane trusses		

Fig.	(5.21) 72-bar space truss	122
Fig.	(5.22) Design history of 72-bar space truss	122
	Displacement and stress constraints	
Fig.	(5.23) Design history of 72-bar space truss	123
	Displacement and buckling constraints	
Fig.	(5.24) Effect of displacement limits on optimal	123
	design of 72-bar space truss with buckling constraints	
Fig.	(6.1) Reticular patterns for single layer dome	167
Fig.	(6.2) Reticular patterns for double layer dome	167
Fig.	(6.3) Schwedler dome	168
Fig.	(6.4) Lamella dome	168
Fig.	(6.5) Parallel lamella dome	168
Fig.	(6.6) Hexagonal dome	168
Fig.	(6.7) Geodesic dome	169
Fig.	(6.8) Some types of joints	169
Fig.	(6.9) Spherical and triodetic joints	170
Fig.	(6.10) Roof covering	170
Fig.	(6.11) Concentrated loads on domes	171
Fig.	(6.12) Wind load distribution	171
Fig.	(6.13) Sliding support	172
Fig.	(6.14) Fixed Support	172
Fig.	(6.15) Dome model (I) (Schwedler system)	173
Fig.	(6.16) Dome model (II) (Lamella system)	173
Fig.	(6.17) Dome model (III)	174
Fig.	(6.18) Sectional elevation of domes	174
	(Height/Span $\simeq 0.30$)	
Fig.	(6.19) Effect of height to span ratio on optimal	175
	design Dome model (I), Service loads	
Fig.	(6.20) Effect of height to span ratio on optimal	175
	design Dome model (I), Wind & service loads	
Fig.	(6.21) Effect of height to span ratio on optimal	176
	design Dome model (II), Service loads	
Fig.	(6.22) Effect of height to span ratio on optimal	176
	design Dome model (II), Wind & service loads	