UTILIZATION OF ORGANIC WASTES FOR CUILTIVATION AND PRODUCTION OF MUSHIROOM

Ву

THANAA FOUAD MOHAMMADY

B. Sc. Agric. (Horticulture), Ain Shams University, 1976. M. Sc. Agric. (Horticulture), Ain Shams University, 1987.

Under the supervision of:

Prof. Dr. Hosnia M. Gomaa.

Prof. of Vegetable Crops, Ain Shams University.

Prof. Dr. Refaat M. Helal.

Prof. of Vegetable Crops, Ain Shams University.

Prof. Dr. Mohamed Aly Ahmed.

Prof. of Plant Pathology, Ain Shams University.

Approval Sheet

UTILIZATION OF ORGANIC WASTES FOR UTILIZATION OF ORGANIC WASTES FOR

Ву

THANAA FOUAD MOHAMMADY

B. Sc. Agric. (Horticulture) Ain Shams University, (1976).

M. Sc. Agric. (Horticulture) Ain Shams University, (1987).

Prof. Dr. Ahmed M. Alian

Prof. of Microbiology, Cairo Univ.

This thesis for Ph. D. degree has been approved by:

Prof. Dr. Ibrahim I. El-Oksh

Prof. of Vegetable Crops, Ain Shams Univ.

Prof. Dr. Refaat M. Helal

Prof. of Vegetable Crops, Ain Shams Univ. (Supervisor)

000

Date of examination: 13 / 2 /1996

ABSTRACT

Thanaa Fouad Mohammady. (Utilization of organic wastes for cultivation and production of mushroom), Ph. D. Agricultural Science (Vegetable crops)
Department of Horticulture, Faculty of Agriculture, Ain Shams University.

These studies included four experiments:

The first experiment was to investigate the suitable organic wastes for growth and production of oyster mushroom in winter and spring seasons. Eleven organic wastes were used for cultivation of two species of oyster mushroom, i.e, *P. columbinus* and *P. sajor-caju*. Results indicated that three substrates, i.e, rice straw, corn stalks and wheat straw showed high productivity of oyster mushroom fruit bodies. Cultivation of oyster mushroom in winter season produced higher yield of fruit bodies than that in spring season.

The second experiment was to study the best supplements substrates which can be added for improving characteristics of the tested organic substrates for increasing fruit bodies production and quality. Four supplements substrates, i.e., 5% wheat bran, 5% brewery wastes, 2% ammonium nitrate and 2% urea were used. As for organic substrates, four materials, i.e., wheat straw, rice straw, corn stalks and sugar cane baggase were used. Results indicated that the highest yield was obtained due to adding wheat bran to all organic substrates. Adding 2% urea to all organic substrates led to sharp decrease in total yield.

The third experiment was to study the optimum conditions to increase period of storage ability for fresh fruit bodies. Fruit bodies were backed in different types of bags, i.e. polyethylene bags polypropylene bags, treated polyethylene bags, paper bags and paper bags covered with plastic sheets. Storage was carried out at 2, 4, 8 and 12°C for 12 days. The obtained results indicated that, fresh fruit bodies can be successfully stored at either 2 °C or 4 °C for 12 days in case of using two bag types, i.e, polyethylene and treated polyethylene bags.

The fourth experiment was to study the effect of intercropping of oyster mushroom on the production and chemical properties of the cultivated soil. The intercropping was carried out between the rows of cauliflower in spring and overwintering eggplants in winter. The obtained results indicated that cultivation of oyster mushroom between vegetable plants in winter season can produce good yield as compared with greenhouses production. It also improved soil characteristics and inhibited the weeds growth.

Key words: Organic wastes-oyster mushroom-fruit bodies-storage-open field-supplements-intercropping.

ACKNOWLEDGEMENT

The author wishes to express her deep appreciation and gratitude to Prof. Dr. Hosnia M. Gomma, Professor of Vegetable Crops, Prof. Dr. Refaat M. Helal, Professor of Vegetable Crops, Horticulture Department and to Prof. Dr. Mohamed Aly Ahmed, Professor of Plant Pathology, Faculty of Agriculture, Ain Shams University for their supervision and invaluable help which they gave during the course of this study and the preparation of the manuscript.

Deep thanks are also due to **Prof. Dr. Akila S. Hamza**, Director of Central Laboratory for Food and Feed (CLFF), Agricultural Research Center, for her kind attention, great help and for all what she has been donated for providing facilities throughout the laboratories analysis.

The author would like to extend her deep gratitude to Mushroom Research and Production Unit (MRPU) and the Farm of the Faculty of Agriculture, Ain Shams University for providing equipments, spawns and all efforts for mushroom cultivation.

I wish to thank all the staff of the Horticulture Department, Faculty of Agriculture, Ain Shams Univ. as well as the Central Lab. for Food and Feed (CLFF), for their help during this work.

Thanks are also due to **Dr. Mohamed F. Z. Emara**, Researcher in the Central Lab. for Food and Feed (CLFF) for his encouragement and his valuable assistance during this study.

My deepest thanks to my dear parents and my children for their warm encouragement and helpful support.

TABLE OF CONTENTS

				Pag
1-	IN]	FROD	UCTION	1
2-	RE	VIEW	OF LITERATURE	3
	2-1	- Orga	nic substrates used for musbroom cultivation:	3
	2-2	- Orga	anic supplements:	8
	2-3	- Chen	nical fertilizers supplements:	9
	2-4	- Effec	et of fungal growth of oyster mushroom on the	
		chemi	ical composition of the agricultural wastes:	11
	2-5	- Chen	nicał composition of oyster musbroom:	13
		2-5-1	- Protein content and non protein nitrogen:	13
		2-5-2	- Amino acids content :	14
		2-5-3	- Fat content :	15
		2-5-4	- Ash content :	16
		2-5-5	- Crude fibers content :	16
	2-6	- Effec	ct of storage methods on mushroom quality:	6
	2-7-	Inter	cropping of oyster mushroom with different vegetable	
		plant	ts in the open field :	8
3-	M	ATERI	IALS AND METHODS2	20
	3-1	- The fi	irst experiment: Effect of different organic substrates on	
		cultiv	ration of oyster mushroom:	20
	3-2	- The se	econd experiment: Effect of some supplement substrates on	
		the yi	ield of oyster mushroom:	4
	3-3-	The thi	ird experiment: Effect of low temperatures	
		on sto	oragability:	25
	3-4	- The fo	surth experiment: Intercropping of oyster mushroom between different	
			No alone in the case folk	

4- RE	SULTS	S AND DISCUSSION:	29
4-1	- The f	irst experiment : Effect of different substrates on fruit	
	bodie	s production and quality of oyster mushroom:	29
	4-1-1	- Yield of fruit bodies:-	29
		A- Spring season cultivation:	29
		B- Winter season cultivation:	33
	4-1-2	- Chemical composition of fruit bodies:	36
		4-1-2-1- Crude protein and amino acids:	36
		4-1-2-2- Ash content:	40
		4-1-2-3- Crude fibers content:	40
		4-1-2-4- Fat content:	41
	4-1-3	-Effect of fungal growth of P. columbinus	
		on the chemical components of the organic substrates:	41
4-2	- The se	cond experiment: Effect of some supplements	
	on the	total fresh yield of oyster mushroom fruit bodies:	44
	4-2-1	- Total yield of fruit bodies:	44
	4-2-2	- Chemical composition of fruit bodies:	50
4-3-	- The th	nird experiment: Effect of storage temperatures on the	
	qualit	y of oyster mushroom (P. columbinus) fruit bodies	
	packe	d in different bags:	53
		A- Weight loss and organoleptic quality of fresh fruit bodies:	53
		B- Chemical composition of fruit bodies:	57
4-4	- The f	ourth experiment:- Intercropping of oyster mushroom:	61
	4-4-1	- Season/plant interaction:-	61
	4-4-2	- Effect of oyster mushroom intercropping on soil	
		nutrients:-	64
	4-4-3	- Macro and micro nutrients of the spent straw-compost:	64
	4-4-4	- Effect of intercropping of oyster mushroom on weed	
		control	66
5-	SUM	MARY AND CONCLUSION	68
6-	District	FRENCES	7.4
11-	PC P. PI	P. P. P. ANG. P. P.	14

LIST OF TABLES

l'able l'	vo.	Page
1	Effect of different organic substrates on fresh fruit bodies	
	production (g/2kg wet substrate) of two species of oyster	
	mushroom (spring, 1991)	30
2	Effect of different organic substrates on fresh fruit bodies	
	production (g/2kg wet substrate) of two species of oyster	
	mushroom (spring, 1992)	31
3	Effect of different organic substrates on fresh fruit bodies	
	production (g/2kg wet substrate) of two species of oyster	
	mushroom (winter, 1991).	34
4	Effect of different organic substrates on fresh fruit bodies	
	production (g/2kg wet substrate) of two species of oyster	
	mushroom (winter, 1992)	35
5	Chemical composition of P.columbinus fruit bodies	
	produced on different organic substrates	
	(average of winter 1991 and 1992)	37
6	Chemical composition of P.sajor-caju fruit bodies	
	produced on different organic substrates	
	(average of winter 1991 and 1992)	37
7	Various amino acids (mg/16g N) of fruit bodies for two	
	Pleurotus species cultivated on rice straw substrate	
	(average of winter 1991 and 1992)	39

8	Effect of fungal growth of oyster mushroom on the
	chemical components of the organic substrates
	(as % of the dry weight, average of winter 1991 and 1992)
9	Effect of some supplementary substrates on total
	fresh weight of fruit bodies (g/2kg wet substrate)
	of oyster mushroom, winter season, 1993
10	Effect of some supplementary substrates on number
	of fruit bodies (per 2kg wet substrate) of oyster
	mushroom, winter season, 1993
11	Effect of some supplementary substrates on total
	fresh weight of fruit bodies (g/2kg wet substrate)
	of oyster mushroom, winter season, 1994
12	Effect of some supplementary substrates on number
	of fruit bodies (per 2kg wet substrate)
	of oyster mushroom, winter season, 1994
13	Effect of some supplementary substrates on the
	chemical composition of P.columbinus fruit bodies
	(average of 1993 and 1994)
14	Effect of some supplementary substrates on the
	chemical composition of P. sajor-caju fruit bodies
	(Average of 1993 and 1994)
15	Mean Scores from the sensory evaluation of fresh
	bodies during storage (Winter 1995)56

16	Yield of oyster mushroom (g/8kg wet rice straw),
	cultivated between cauliflower and eggplant
	(Average of 1993 and 1994 years)
17	Effect of cultivation of oyster mushroom (P.columbinus)
	on the chemical composition of the soil and the spent-straw-compost
18	Effect of cultivation of P.columbinus between cauliflower and
	eggplant plants on number and kind of weeds

LIST OF FIGURES

Fig.	No.	Pag
:	1	Effect of storage temperatures on weight loss of oyster mushroom
		(P.columbinus) packed in different kinds of bags (winter1995)54,55
:	2	Effect of storage at different temperatures on crude protein
		content of fruit bodies of oyster mushroom (P. columbinus)
		packed in different kinds of bags. (after 12 days), (winter 1995)58
;	3	Effect of storage at different temperatures on ash
		content of fruit bodies of oyster mushroom (P. columbinus)
		packed in different kinds of bags. (after 12 days), (winter 1995)58
	4	Effect of storage at different temperatures on crude fibers
		content of fruit bodies of oyster mushroom (P. columbinus)
		packed in different kinds of bags. (after 12 days), (winter 1995)
:	5	Effect of storage at different temperatures on fat content
		of fruit bodies of oyster mushroom (P.columbinus) packed in
		different kinds of bags. (after 12 days), (winter 1995)59
	6	Effect of storage at different temperatures on non-protein
		nitrogen of fruit bodies of oyster mushroom (P. columbinus)
		packed in different kinds of bags. (after 12 days), (winter 1995)60
7,	, 8	Intercropping of oyster mushroom (Pleurotus columbinus)
		in the open field between the rows of cauliflower plants

INTRODUCTION

The oyster mushroom, belongs to the genus *Pleurotus*, can grow on virtually any agricultural waste substrate and has a high saprophytic colonizing ability. The world production of the oyster mushroom was 900 000 tons (Zadrazil and Dube, 1992), China alone produces about 800 000 tons/year. In last year its production there was seven times more than the previous years. There is an annual increase in world production. The top producers are Japan, Taiwan, Italy and France.

Recently, cultivation and marketing or consumption of oyster mushroom is spreading rapidly in Egypt due to its ability to grow on wide range of unfermented agricultural wastes with low costs (Ahmed, 1995).

Edible mushrooms have been considered as the oldest microbial food (Kurtzman, 1974) and were possibly part of man's earliest diet (Chang, 1977). In recorded history, it appears that the Pharaohs prized mushrooms as a delicacy and the Greeks thought that warriers should eat mushrooms as a source of strength in battle. They were considered as the food of the Gods. The Chinese civilization also regarded mushrooms as a health food.

In recent years, much attention has been directed towards the development of protein sources used as food for human consumption. Microbial protein (single cell protein) approaches to be one of the alternative ways of increasing the world's protein supply, particularly in developing countries.

The concept of producing food and feed from agricultural wastes has received interest within the late few years as a result of increasingly frequent food shortages and price rises. Agricultural wastes could be converted into palatable food through manipulation of microorganisms, such as mushrooms

Mushroom cultivation is now one of the some intensive and most technically demanding of all vegetable cultivations practised throughout the world. The fact that mushrooms convert wastes materials into a highly flavoured proteinaceous food is clearly relevant to the requirements of both the developing and developed countries. However, irrespective of public demand and food values, the future role of mushrooms will be governed by the economic of production.

Therefore, the object of this work was to study the suitable organic wastes for growth and production of oyster mushroom, the optimum conditions to increase storagability of fruit bodies and the possibility of intercropping oyster mushroom between vegetable crops.