INTRAUTERINE CONTRACEPTIVE DEVICES (IUCDs)

ESSAY

Submitted for Partial Fulfillment of The Master Degree in Obstetrics and Gynecology

Sally Mohamed El Zanaty (M. B. B. ch)

618.178 5.7 433⁴²

Supervised by

Prof. Dr. Mohamed Abdel Halim Aly Mehana

Professor of Obstetrics and Gynecology Faculty of Medicine - Ain Shams University

Dr. Jehan Allam Hamed Saad

Assistant Professor of Obstetrics and Gynecology Faculty of Medicine - Ain Shams University

JUL-12/

Faculty of Medicine Ain Shams University 1993

25 July 11/18

Table of Contents

			<u>Page</u>
Table of Figur	es		
Acknowledgen	nent		
Chapter one	:	Historical review of intrauterine contraceptive devices	1
Chapter two	:	Types of intrauterine contracetive devices	18
		- Non medicated intrauterine devices	19
		- Medicated intrauterine devices	31
		- Chinese intrauterine devices	45
Chapter three	:	Biochemical responses to intrauterine devices	51
Chapter four	:	Mode of action of intrauterine devices	57
Chapter five	:	Insertion and Removal of intrauterine devices	72
		- Insertion technique	74
		- Timing of insertion	83
		- Removal	88
Chapter six	:	Complications of intrauterine devices	90
		I Bleeding	91
		II . Cramping	107
		III . Expulsions	108
		IV . IUD-assosiated acute pelvic inflammatory disease	113
		V . Complications related to pregnancy	123

Table of Contents (cont.)

		<u>Page</u>
	- Spontaneous abortion	123
	- Septic abortion	124
	- Outcome of pregnancy	127
	- Ectopic pregnancy	128
	VI. Embedment and Perforation	139
Chapter seven :	Indications and Contraindications for intrauterine devices	143
Chapter eight :	Efficacy of intrauterine devices	152
Chapter nine :	Safety of intrauterine contraceptive devices	159
Chapter ten :	Intrauterine devices in family planning programs	166
Chapter eleven:	Ultrasonography and intrauterine devices	173
Chapter twelve :	Future development in intrauterine contraception	181
Summary		184
References		189
Arabic summarv		

Table of Figures

				<u>Page</u>
Figure	1-1	:	The Richter IUD	3
Figure	1-2	:	The Pust Cervico-Uterine device	4
Figure	1-3	:	Graefenberg star	4
Figure	1-4	:	Graefenberg ring	5
Figure	1-5	:	Ota ring	6
Figure	1-6	:	Hall and Stone ring	7
Figure	1-7	:	Margulies spiral	8
Figure	1-8	:	Lippes loop	8
Figure	1-9	:	Birnberg bow	9
Figure	1-10	:	Tatum T	11
Figure	1-11	:	Dalkon shield	12
Figure	1-12	:	TCu-220C	14
Figure	1-13	:	TCu-380A	14
Figure	1-14	:	Cu-7	14
Figure	1-15	:	Multiload	15
Figure	1-16	:	Nova T	15
Figure	2-1	:	Lippes loop (A, B, C & D)	19
Figure	2-2	:	Delta Lippes loop	20
Figure	2-3	:	Margulies spiral (Gynekoil	
			Regular an Gynekoii Small)	21
Figure	2-4	:	Birnberg bow (Large No. 5,	
			Small No. 2 \	

Table of Figures (cont.)

				<u>Page</u>
Figure	2-5	:	Graefenberg ring	22
Figure	2-6	:	Hall and Stone ring	23
Figure	2-7	:	Saf-T-Coil (The 25-S,	
			The 32-S, and the 33-S)	23
Figure	2-8	:	Ota ring	24
Figure	2-9	:	Dalkon shield (Nulliparous	
			shield, and standard	25
			Multiparous shield).	
Figure	2-10	:	The Dana Super Lux,	
			and the Dana Cor	26
Figure	2-11	:	Yusei ring	26
Figure	2-12	:	Ypsilon	27
Figure	2-13	:	Antigon-F	28
Figure	2-14	:	Majzlin spring	28
Figure	2-15	:	Massouras Duck's Foot	29
Figure	2-16	:	Shamrock	30
Figure	2-17	:	Om-ga	30
Figure	2-18	:	Copper-7 (Gravigard)	31
Figure	2-19	:	TCu-200, and TCu-200B	32
Figure	2-20	:	TCu-220C	33
Figure	2-21	:	TCu-380A, TCu-380S	34
Figure	2-22	:	Cu-SAFE 300	35
Figure	2-23	:	MLCu-375 (Standard, Short,	
			and SL.)	36

Table of Figures (cont.)

				<u>Page</u>
Figure	2-24	:	Multiload Mark II	37
Figure	2-25	:	Nova T	38
Figure	2-26	:	Ombrelle 250	39
Figure	2-27	:	Fincoid 350	40
Figure	2-28	:	Soonawala Y	40
Figure	2-29	:	Szontagh	41
Figure	2-30	:	Spring Coil	41
Figure	2-31	:	Latex Leaf	42
Figure	2-32	:	Progestasert	43
Figure	2-33	:	Levonorgestrel-20	44
Figure	2-34	:	Modified Lippes Loop	44
Figure	2-35	:	Chinese ring	45
Figure	2-36	:	Mahua ring	45
Figure	2-37	:	Canton Flower	46
Figure	2-38	:	Chinese Shanghai V	46
Figure	2-39	:	Shanghai TCu-188	47
Figure	2-40	:	Uterine-Occluding Device	48
Figure	2-41	:	Cu-Fix 390	49
Figure	5-1	:	The push-out technique	76
Ü			for the Lippes loop	
Figure	5-2	;	Loading of the TCu-380A	77
Figure	5-3	:	Introducing the insertion tube	77
Figure	5-4	:	Withdrawal of the insertion tube	77
Figure	5-5	:	Withdrawal of the rod	77

Table of Figures (cont.)

				<u>Page</u>
Figure	5-6	:	Introducing the IUD	78
Figure	5-7	:	Passing the internal os	78
Figure	5-8	:	Checking the placement	
			of the IUD	79
Figure	5-9	:	Removal of the inserter	79
Figure	5-10	:	IUD in situ after cutting the thread	79
Figure	5-11	:	The Nova T	80
Figure	5-12	:	Open the plastic cover	80
Figure	5-13	:	Adjust the yellow ring	81
Figure	5-14	:	Draw the IUD into the insertion tub	e 81
Figure	5-15	:	Insert the Nova T	82
Figure	5-16	:	Draw down the insertion tube	82
Figure	5-17	:	Push the insertion tube	
			upwards again	82
Figure	5-18	:	Withdraw the plunger and the	
			insertion tube	82
Figure	5-19	:	Cut off the threads	82

Acknowledgement

I would like to express my sincere gratitude to Prof. Dr.

Mohamed Abdel Halim Mehana, Prof. of Obstetrics and

Gynecology, Ain Shams University, For his whole hearted

support, and experienced advice.

I am also indebted to Assist. Prof. Dr. Jehan Allam

Hamed Saad, Assist. Prof. of Obstetrics and Gynecology,

Ain Shams University, for her valuable, and close supervision

and whose great help and constant guidance contributed to the

successful conclusion of this work.

CHAPTER ONE

HISTORICAL REVIEW OF INTRAUTERINE CONTRACEPTIVE DEVICES

There is considerable debate as to when and where intrauterine devices (IUDs) were first used. For centuries, Arabian and Turkish camel owners have used intrauterine contraception to prevent pregnancy in their saddle animals. Their technique was simple. A small stone (pessary) was inserted into the uterus through a hollow tube (Cauvet, 1925). Undoubtedly a similar method had been applied to women at or about the same time.

The first mention of intrauterine pessaries in ancient medicine occurs in the Hippocratic writings on "Diseases of Women". A hollow lead sound was passed into the uterus and used for their insertion (McKay, 1901).

The immediate antecedents of the modern IUD were the cervico-uterine stem pessaries used in the 19th and early 20th centuries. These were small buttons or caps which covered the opening of the cervix and were attached to stems extending into the cervical canal. In some models the stem extended even further into the uterine cavity in the form of a bulb or flexible arms or wings(Davis, 1971) Made from a variety of materials such as ivory, wood, glass, silver, gold, ebony, pewter, and diamond-studded platinum, these pessaries were ostensibly used for many different purposes including support of the uterus, prevention of irregular or delayed menses, and a cure for dysmenorrhea and infertility (Southam, 1973). Before 1890 there was no published reference to the contraceptive effect of pessaries although they were very likely also used for that purpose (Symmers, 1973).

In 1902 a wishbone-shaped pessary which extended into the uterus was patented by Dr. Carl Hollweg in Germany. Hollweg reported that the pessary had been inserted in 700 women for the prevention of pregnancy (Hollweg, 1902).

One of these pessaries known as "Sterilette" was advertised for regulation of menstruation and was sold complete with instructions for self-insertion. Many of these early stem pessaries were apparently used not only as contraceptives, but also in some cases as abortifacients. This use caused serious medical complications such as hemorrhage and pelvic infection sometimes resulting in death (Siddall, 1924). In a period when antibiotics were not available, the hazards of infection were great. Cervico-uterine pessaries were

therefor promptly condemned by the medical community. This early condemnation retarded medical acceptance of other intrauterine devices introduced later.

The first completely intrauterine device designed specifically for contraception was a ring made of silkworm gut. Richter, a German physician, described the device in a two page article in the Deutsche Medizinische Wochenschrift in 1909 (Fig. 1-1) (Richter, 1909).

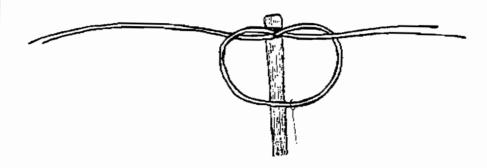


Fig. (1-1): The Richter IUD, here shown with its inserter, was first described in 1909 and made of silkworm gut.

Pust designed a cervical button attached by a stem to intrauterine silkworm threads in the 1920s (Fig. 1-2). It combined Richter's silkworm ring and the older stem pessary. No pregnancies or serious complications occurred among the 453 women in whom he inserted the device. He distributed over 23,000 of these devices for insertion by other interested physicians (*Pust*, 1923), but many still protested their use, claiming that the devices would cause pelvic infection (*Siddall*, 1924).

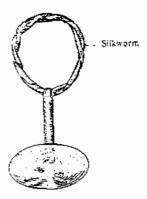


Fig. (1-2): The Pust cervico-uterine device combined Richter's silkworm ring with the older stem pessary.

A significant event in IUD history occurred with the ingenious and daring studies of Graefenberg, as reported in 1928 (Graefenberg, 1928). His first device consisted of a six-pointed star made by tying three pieces of silkworm gut together at the center (Fig. 1-3,A). Initially the central tie was of silkworm gut also. Graefenberg soon found that he could not easily detect the presence of the star within the uterine cavity by means of a probe or sound. He attempted to correct this structural deficiency by substituting a center tie made of thin silver wire for one gut (Fig. 1-3,B). The wire permitted detection with the uterine probe, and also rendered the star partially radiopaque. The star was so soft, however, that it was readily expelled from the uterus. Although the star has relatively low retention rate, Graefenberg thought that the silver-bound device was somewhat more effective as a contraceptive than the original silver-free star.

Fig. (1-3,A &B), A: Graefenberg star, all silkworm gut, B: Graefenberg star, center tie of "silver" wire.

In order to increase the retention rate, Graefenberg conceived of and made the first intrauterine ring. This device consisted of several turns of silkworm gut making a ring approximately two cm in diameter having a cross section of about two mm (Fig. 1-4,A). The rings were then made more rigid as well as radiopaque by binding them with fine silver wire (Fig. 1-4,B). It was soon replaced by a ring made by joining the two ends of a tightly wound spiral of silver wire (Fig. 1-4,C). The spirally wound ring possessed moderate spring properties, and hence could be compressed into a smaller and oblong configuration for insertion through the cervical canal. Its inherent resiliency then caused it to return to the original circular ring shape when it was released within the more spacious endometrial cavity.

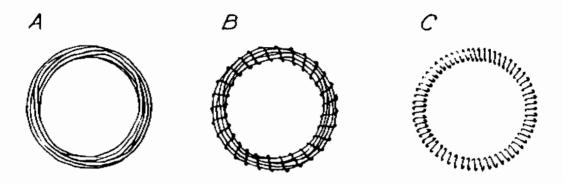


Fig. (I-4,A,B &C), A: Graefenberg ring; all silkworm gut, B: Graefenberg ring; silkworm gut wound with "silver" wire, C: Graefenberg ring; tightly wound spiral of "silver" wire.

Both Graefenberg and Pust stressed the fact that neither device should be used in women with pelvic inflammatory disease (PID). There was some disagreement between Pust and Graefenberg about design. Pust felt that the simple cervical extension on his silkworm ring was an advantage. Graefenberg insisted that any cervical extension was ill-advised. This question concerning our modern devices was raised by *Anna L. Southam* in 1964. In recent years the connection has been clinically studied, Nova T and TCu-200 Ag IUDs were inserted with or without a tail in order to study the occurrence of PID. The results indicate a lower risk of genital infection if the device is inserted without the tailstrings (Batar et al., 1991).

In 1934 Tenrei Ota, working in Japan, introduced the ring that bears his name (Fig. 5). Ota claimed that his gold or gold-plated silver ring, which had a small disc attached in the center of the ring by three spokes, yielded fewer failures (one pregnancy among 73 sers), than Graefenberg's (five pregnancies among 51 users) (Ota, 1934).

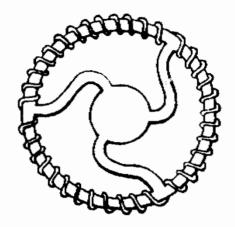


Fig. (1-5): Ota ring.

The enthusiasm which these IUDs produced in the early 1930s was followed by another wave of protest which branded them inefficient and dangerous. In 1936 the Japanese government prohibited their use. Although Graefenberg claimed his ring had a pregnancy rate of only 1.6 percent, European physicians who had no practical experience with the devices but opposed them on theoretical grounds forced Graefenberg to abandon his device.

The favourable reports by Oppenheimer in Israel and Ishihama in Japan on IUDs quickly led to the modern era of IUD development. In 1959 Oppenheimer reported on his many years of experience with modifications of the Graefenberg ring. His series included 1,500 cases and he encountered no serious complications (*Oppenheimer*, 1959). Ishihama, also in 1959, reviewed the results obtained with the use of the Ota ring in 20,000 Japanese women (*Ishihama*, 1959) These two reports renewed interest and stimulated further research. Seen in the light of the alarming rate of population growth, the need for a simple, effective method of birth control demanded reevaluation of this old technique.