

Ain Shams University

Faculty of Engineering

Computers and Systems Engineering Department

Optimal Control in Nonlinear Robot Systems

A Thesis submitted in fulfillment

of the requirements of the degree of Ph.D. in Electrical Engineering

(Computers&Systems)

by

Eng. Hassan Elsayed Mohammed Aly Hashad

M.Sc., Higher Technological Institute,

10-th of Ramadan City, Egypt

Supervised by:

Prof. Dr. Abdel-Monem Wahdan.

Ain Shams University

Ass. Prof. Dr. Tayel E. Dabbous.

Higher Technological Institute

Cairo-1996

Ain Shams University

Faculty of Engineering

Computers and Systems Engineering Department

Optimal Control in Nonlinear Robot Systems

A Thesis submitted in fulfillment

of the requirements of the degree of Ph.D. in Electrical Engineering

(Computers&Systems)

by

Eng. Hassan Elsayed Mohammed Aly Hashad

M.Sc., Higher Technological Institute,

10-th of Ramadan City, Egypt

Supervised by:


Prof. Dr. Abdel-Monem Wahdan.

Ain Shams University

Ass. Prof. Dr. Tayel E. Dabbous.

Higher Technological Institute

Cairo-1996

**

EXAMINERS COMMITTEE

Name, Title & Affiliation:

Signature:

1-Prof. Dr. Awad Ibrahem Saleh.

Professor of Automatic Control

Faculty of Engineering-Assuit University.

2-Prof. Dr. Mohamed A. Sheirah.

Vice Dean of Faculty of Engineering

Ain Shams University.

3-Prof. Dr. Abdel-Monem Wahdan.

Professor of Systems Engineering

Ain Shams University.

4-Ass. Prof. Dr. Tayel E. Dabbous

Higher Technological Institute

Tenth of Ramadan.

0 0

MA Shiff

A-whole-

Date: 8 / 2 /1996

Statement

This dissertation is submitted to Ain Shams University for the degree of Doctor of Philosophy in Electrical Engineering (Computer and Systems Engineering).

The work included in this thesis was carried out by the author at the Computer and Systems Engineering Department, Ain Shams University.

No part of this thesis has been submitted for a degree or qualification at other university or institution.

Date:

8 / 2 / 1996.

Hassa

Signature:

Name:

Hassan Elsayed Mohammed Aly Hashad

ACKNOWLEDGMENT

GOD, thanks more than I can say.

I wish to thank:

- 1-My supervisor: Prof. Dr. Abdel Monem Wahdan.
- 2-My supervisor: Ass. Prof. Dr. Tayel E. Dabbous.
- 3-My chairman: Prof. Dr. Salah Elhawi.
- 4-Technical staff of Electrical Engineering and Computers Department of Higher Technological Institute, 10-th of Ramadan.
- 5-Staff of Plant Services Department of Arab British dynamics in Arab Organization of Industries, Cairo.

ABSTRACT

Hassan Elsayed Mohammed Aly Hashad. Optimal Control in Nonlinear Robot Systems. Unpublished Doctor of Philosophy dissertation, Computers & Systems Engineering Department, Faculty of Engineering, Ain Shams University, 1996.

The idea: Any significant performance gain in the control of nonlinear dynamical systems requires the consideration of more efficient dynamic model and sophisticated control techniques due to the behavior of these systems. Thus, the main idea of controlling nonlinear dynamical systems using linear control structure is considered in different form. The robot manipulator has a complicated nonlinear equations of motion as well as the redundancy problem of achieving the desired final position of end-effector. So it becomes a good example for application.

The research: In this Thesis our research is divided into four main parts. In the first part, we consider the problem of controlling the nonlinear robot arm dynamics using linear control structure with unknown gain matrices. Using variational arguments we develop the necessary conditions of optimality on the basis of which the unknown matrices can be determined. We also have used the linearized robot arm model and apply the same controller. However, our results indicated that linear control structure applied to a nonlinear model is more stable than the case of linearized model.

In the second part, we consider the problem of adaptive control of nonlinear robot arm model. In this case, we assume that some or all the parameters of the robot are unknowns. A linear control structure with unknown gain matrices was also proposed and the problem has been converted into an equivalent identification problem. Necessary conditions for optimal identification have been developed for computing the unknowns.

The simulation results (upon UNIMATION PUMA 560 ROBOT) indicated that the proposed controller is well adapted to the change in robot arm parameters and it can also drive the arm to the desired position. The same control structure has been applied to the linearized model but again the results of the nonlinear case was much better.

In the third part, we have included in our dynamics the effect of random loading, random inputs and vibrations due to the movement of the arm. This is done by adding Gaussian noise to the linearized state and output equations of the arm. We have considered the filtering problem which include estimating the arm states given the observed process (output process). For this, we have used the well known Kalman filter. Further, Kalman filter equations has been modified to suit the case where the robot arm parameters are unknowns (adaptive filtering).

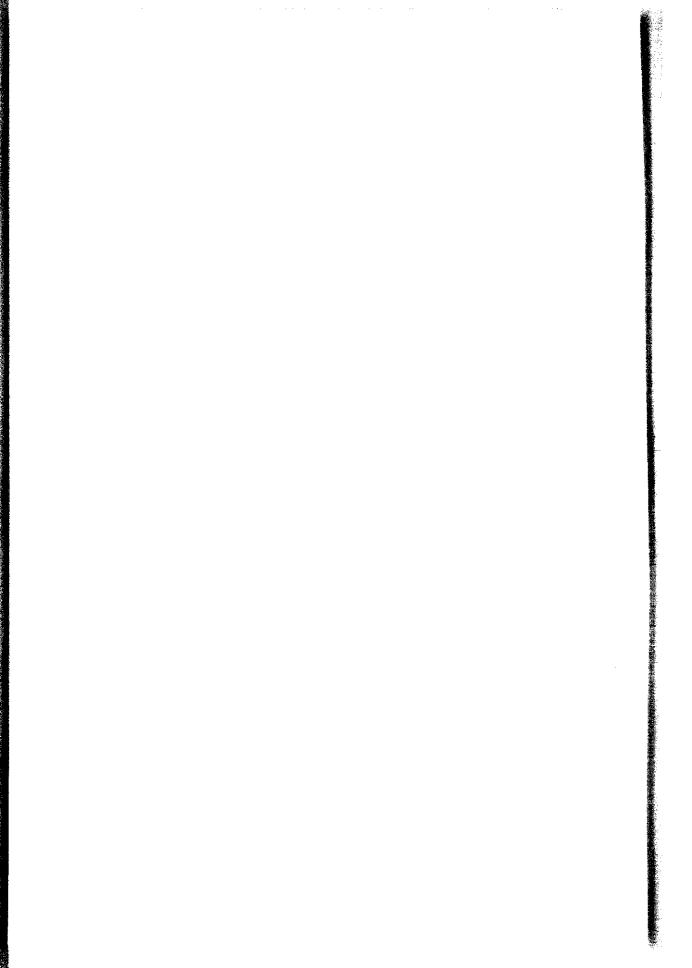
In the fourth part, we have considered the stochastic control problem for the linearized model of robot manipulator. In this case we have proposed a linear control structure (which depends on the estimating state as well as the driving input signal) with unknown gain matrices. Using similar procedure as that of part one and two, we have been able to determine the unknown gains. Simulation results indicated that with the help of the proposed control the robot manipulator can follow closely the desired trajectory and achieving the obstacles avoidance.

Note that the proposed control structure is simple, easy to implement than the nonlinear controller, and hence it can be useful in application.

Key Word: Robot Manipulator, Configuration Variables, Linear Controller, Optimal Control, Adaptive Control, Kalman Filter, Adaptive Filtering, Stochastic Control.

CONTENTS

ABSTRACT			VI
LIST OF FIGU	JRES A	AND TABLES	x
SYMBOLS AN	D AB	BREVIATIONS	XII
CHAPTER-1:	INTR	ODUCTION	1
1.1 Robot Mar	upulato	r as a Nonlinear Dynamic System.	1
1.2 Stabilization	on and T	Tracking Control Problems.	2
1.3 Configurat	ion and	Redundancy Control Problems.	4
1.4 Parametric	Uncert	ainties in Control Problems.	5
1.5 Thesis Con	tributio	n.	7
1.6 Outlines of	the The	esis.	8
CHAPTER-2:	THE	MATHEMATICAL MODEL	
	OF T	HE ROBOT MANIPULATOR	10
2.1 Introductio	n.		10
2.2 Robot Mar	nipulato	r Parameters.	10
2.3 Robot Arm	Kinem	atics.	12
2.4 Robot Arm	Dynan	nics.	20
2.5 Comments			30
CHAPTER-3:	AN	OPTIMAL CONFIGURATION	
	AND	POSITION CONTROL FOR	
	ROB	OT MANIPULATOR USING	
	LINE	AR CONTROL STRUCTURE	31
3.1 Introduction	n.		31
3.2 Configurat	ion Var	iables.	33
3.3 Control Pro	oblem F	formulation.	35
3.4 Linearized	Model:	for Robot Manipulator.	48
3.5 Concluding	Remar	ks.	64


CHAPTER-4:	ADAPTIVE	CONTROL FOR	t .
	ROBOT MA	NIPULATOR	65
4.1 Introduction	on.		65
4.2 Adaptive (Control Problem I	Formulation.	66
4.3 Adaptive (Control for Linear	ized Model.	78
4.4 Concluding	g Remarks.		91
CHAPTER-5:	ADAPTIVE	FILTERING AN	D
	CONTROL	FOR ROBOT	
	MANIPULA?	OR	92
5.1 Introduction	on.		92
5.2 Optimal Fi	iltering.	,	93
5.3 Adaptive F	Filtering for Robo	ot Manipulator.	97
5.4 Stochastic	Linear Control fo	or Robot Manipulator.	110
5.5 Concluding	g Remarks.		113
CHAPTER-6:	CONCLUSIO	N	114
APPENDIX A			116
APPENDIX B			122
APPENDIX C			127
DEFEDENCE	S		140

LIST OF FIGURES AND TABLES

Figure(2.2-1)	:Link coordinate system and its parameters.	11
Figure(2.3-1)	:Forward kinematics representation.	12
Figure(2.3-2)	:Inverse kinematics representation.	13
Figure(2.3-3)	:Different configuration with the same position.	13
Figure(2.3-4)	:Two-link planer manipulator coordinates.	16
Figure(2.4-1)	:Block diagram of forward dynamics.	20
Figure(2.4-2)	:Block diagram of reverse dynamics.	21
Figure(2.4-3)	:Vector definition in the G-D equation.	25
Figure(2.4-4)	:A two-link planer manipulator example.	28
Table(2.3-1)	:Link parameters for 2-link planer manipulator.	16
Figure(3.2-1)	:Self-motion of planner 2-DOF arm.	33
Figure(3.3-1)	:Planner two-link mechanism.	36
Figure(3.3-2)	:Schematic diagram for the control system.	40
Figure(3.3-3)	:Flow chart of optimal control.	47
Figure(3.4-1)	:Vertical position of the end-effector.	59
Figure(3.4-2)	:Shoulder angle $\theta_1(t)$.	59
Figure(3.4-3)	:The Performance measure J.	60
Figure(3.4-4)	:Control of joint u_1 and u_2 .	60
Figure(3.4-5)	:Vertical position using k of nonlinear.	61
Figure(3.4-6)	:Vertical position of the end-effector.	61
Figure(3.4-7)	:Shoulder angle $\theta_1(t)$.	62
Figure(3.4-8)	:The Performance measure J.	62
Figure(3.4-9)	:Control of joint u_1 and u_2 .	63
Figure(3.4-10)	:Vertical position using k of nonlinear.	63
Figure(4.2-1)	:A MRAC system for nonlinear model in	
	two senarate conditions	75

Figure(4.2-2)	:Flow chart of two separate add	aptive
	control.	77
Figure(4.3-1)	:Vertical position in adaptive control.	86
Figure(4.3-2)	:Shoulder angle $\theta_1(t)$ in adaptive control.	86
Figure(4.3-3)	Vertical position in adaptive control.	87
Figure(4.3-4)	:Shoulder angle $\theta_1(t)$ in adaptive control.	87
•	:Vertical position in adaptive control.	88
Figure(4.3-6)	:Shoulder angle $\theta_1(t)$ n adaptive control.	88
Figure(4.3-7)	:Comparison for nonlinear and lineariz	ed
	response of y(t).	89
Figure(4.3-8)		
	response of $\theta_1(t)$.	89
Figure(4.3-9)	:Comparison between optimal and ada	ptive
	control in y(t).	90
Figure(4.3-10)	:Comparison between optimal and ada	-
	control in $\theta_1(t)$.	90
Figure(4.3-11)	:Trajectory of $\theta_2(t)$ with change of pa	arameters
	for nonlinear model.	91
Figure(4.3-12)	:Trajectory of $\theta_2(t)$ with k of first pe	riod
	for nonlinear model.	91
Figure(4.3-13)	:Trajectory of $\theta_2(t)$ with change of p	arameters
	for linearized model.	92
Figure(4.3-14)	:Trajectory of $\theta_2(t)$ with k of first p	eriod
	for linearized model.	92
		
Figure(5.3-1)	:Flow chart of adaptive filtering.	103
Figure(5.3-2)	:Actual and estimated vertical position.	109
Figure(5.3-3)	:Covariance P.	109
Figure(5.3-4)	:Value of S.	110
Figure(5.3-5)	:Value of Γ .	110

Figure(5.3-6)	:Value of L.					111
Figure(5.3-7)	:Element A(2,1).			111		
Figure(5.4-1)	:Comparison	between	optimal	and	stochastic	
control for y(t).					114	

