DESIGN OF EARTHEN CANALS IN SANDY SOIL

USING THE REGIME CONCEPT

BY

HALA ABU-EL-FATH BADAWY

B.Sc. Civil Eng. Ain Shams University

Water Research Center
Research Institute of Weed Control and Channel Maintenance

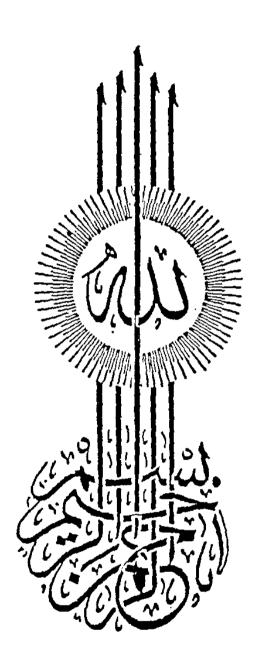
Thesis Submitted in Partial Fulfillment of the Requirement for the Degree of Master of Science In Civil Engineering 917

SUPERVISED BY

Prof.Dr. Mohamed El-Niazi Hammad

Prof.Dr. Alined Fakhry Khattab

Irrigation and Hydraulics Department Faculty of Engineering, Ain Shams University


Director of Research Institute of Weed Control and Channel Maintenance

Dr. Essam Aly Abd-El-Hafiz

Irrigation and Hydraulies Department Faculty of Engineering, Ain Shams University

AIN SHAMS UNIVERSITY 1994

Examiners Committee

1- Prof. Dr. M. El-NIAZI HAMMAD

Vice -Dean of the Faculty of Engineering, Ain Shams University, Cairo.

2- Prof. Dr. GAMAL S. EBAID
Head of Irrigation and Hydraulics
Department, Faculty of Engineering,
Ain Shams University, Cairo.

3- Prof. Dr. MOHAMED HAMDY EL-KATEB Professor of Irrigation Designs, Faculty of Engineering, Cairo University.

4- Prof. Dr. AHMED F.KHATTAB
Director of Research Institute of
Weed Control and Channel Maintenance,
Water Research Center, Ministry of Public
Works and Resources, Cairo.

Signature :

5. selecid

M. H. St. Katet

Date: 19/10/1994

STATEMENT

This thesis is submitted to Ain Shams University for the degree of Master of Science in Civil Engineering.

The work included in this thesis was carried out by the author in the Department of Irrigation & Hydraulics, Ain Shams University, from September 1992 to September 1994.

No part of this thesis has been submetted for the degree or qualification at any other University or Institution.

Date : 19/10/1994

Signature : Hala

Name : Hala Abu El Fath Badauy

ACKNOWLEDGEMENTS

The author wishes to express her appreciation and gratitude to her supervisors, Prof. Dr. Mohamed El-Niazy Hammad, Prof. Dr. Ahmed Fakhry Khattab, and Dr. Essam Aly Abd-El-Hafiz, for their continuous guidance and help throughout the completion of the present investigation.

She also wishes to express her thanks to all her colleagues at the Research Institute of Weed Control and Channel Maintenance for their help and cooperation during both the experimental work and the computer analysis. She is also indebted to both secretary and drawing office staff for typing the manuscript and for preparing the figures.

Last, but not least, the author is deeply grateful to her parents for their sacrifices, blessings and moral support.

ABSTRACT

During the last 40 years the design practice for earthen canals in Egypt was based on El-Difrawy, Molesworth, and Yenidonia regime equations. El-Difrawy equation was deduced for the regime of irrigation system before the construction of Aswan High Dam (AHD) and is valid for average solid suspension 1600 ppm.

As the regime of canals system in Egypt has substantially changed after the construction of AHD, El-Difrawy equation may not be valid any more and new design concept is needed.

Investigations were carried out in Egypt (Khattab et al. 1984, 1985, 1987) based on measurements on stable canals passing through cohesive soil with discharges from 2 to 200 m'/sec., where a series of design regime type equations were deduced. These equations have correlated the relationship between the flow parameters and the canal geometrical elements of water cross-section and the slope.

In a similar way the present study was suggested to investigate the modification of the regime theory to achieve a suitable design equations for canals passing through sandy soil to cover a wide range of discharges from 0.1 to 200 m'/sec . Field measurements were carried out in four stations on Ismailia, Port Said and Suez fresh water canals. Over 79 experiments were conducted during two years to follow up different water levels at maximum and minimum water requirements. To generalize the work, data investigators on sandy canals was also collected. All data were analysed where four regime type equations were deduced. These equations can be used safely in designing canals in sandy soil conveying discharges from 0.1 to 200 m³/sec.More useful regime type equations were also deduced. Comparison between the obtained results and those by others investigators took place.

CONTENTS

CHAPTER 1 Page
INTRODUCTION
CHAPTER 2
PREVIOUS WORK
2.1 INTRODUCTION
2.2 UNIFORM FLOW
2.2.1 Description of Uniform Flow
2.2.2 Development of Uniform Flow
2.3 FLOW IN OPEN CHANNELS
2.4 THE EARLY EQUATIONS
2.4.1 Chezy's Equation
2.4.2 Chezy's Resistance Coefficient
2.4.2.1 Ganguillet and kutter formula
2.4.2.2 Bazin formula
2.4.2.3 Powell formula
2.4.3 Manning Formula
2.4.4 Determination of Manning Roughness Coefficient "n" 1
2.4.5 Factors Influencing "n"
2.4.5.1 Roughness of channel boundaries
2.4.5.2 Aquatic weed
2.4.5.3 Irregularity of cross-section
2.4.5.4 Alignment
2.4.5.5 Other factors affecting n
2.5 DESIGN OF OPEN CHANNELS
2.5.1 Introduction
2 5 2 Design of Stable Farther Channels 2

2.5.3 Critical Attractive Force Approach .	•	•	•	•	•	•	•	23
2.5.3.1 Theoretical analysis				•				23
2.5.3.2 Shields and White equations			•					32
2.5.3.3 White's formula								32
2.5.3.4 Leliavsky's chart								33
2.5.3.5 Lane's equation								33
2.5.4 The Regime Approach								33
2.5.4.1 Kenedy equation								37
2.5.4.2 Lindley equation								38
2.5.4.3 Lacey's equations								38
2.5.4.4 Bose's equations								39
2.5.4.5 Malhotro's equation								39
2.5.4.6 White's equations								40
2.5.4.7 Inglis equation								40
2.5.4.8 Blench's equations								41
2.5.4.9 Leopold and Modock equation								42
2.5.4.10 Marshal Nixon equations								43
2.5.4.11 Simons and Albertson equations							٠	43
2.5.4.12 Anding M.G equations								45
2.5.4.13 Shrikriskna equations								46
2.5.4.14 Knoraz equations								46
2.5.5 Review of Studies for Canal Design in	Εç	JYF	pt					47
2.5.5.1 Ghaleb equation								47
2.5.5.2 Molesworth and Yenidunia equations								47
2.5.5.3 El-Difrawy equation								48
2.5.5.4 El-Banna equation								
2.5.5.5 Kansoh formula								

2.5.5.6 Abd El-Salam and Ebaid charts 60
2.5.5.7 Khattab and others equations 60
2.5.5.8 Design of small canals 67
2.5.5.9 Design of vegetated canals 69
2.5.5.10 Comments on previous work, and objective 72
of the present study
CHAPTER 3
FIELD AND EXPERIMENTAL WORK
3.1 INTRODUCTION
3.2 STABILITY OF EARTHEN CHANNELS
3.2.1 Discharge Condition
3.2.2 Longitudinal Slope of Channel
3.2.3 Shape of Channel
3.2.4 Boundary Material
3.2.5 Water Temperature
3.2.6 Bed Load Material
3.2.7 Effect of Sinuosity of Curvature 79
3.2.8 Effect of Wind Action
3.3 EXPERIMENTAL WORKS AND FIELD DATA COLLECTION 80
3.3.1 Description of the Selected Canals 80
3.3.2 Collected Data
3.3.3 Field Measurements
3.3.4 Laboratory Tests
CHAPTER 4
ANALYSIS AND DISCUSSIONS
4.1 INTRODUCTION
4.2 DISCUSSION OF THE RESULTS

4.2.1 The Correlation Between the Water Cross	•	•	•	111
Section and the Discharge				
4.2.2 The Relation Between the average depth			•	113
"D" and the Discharge "Q".				
4.2.3 The Correlation Between the Hydraulic				113
Radius "R" and the Discharge "Q".				
4.2.4 The Relation Between the Average Velocity				116
"V" and the Value of (R3S)				-
4.2.5 Some Useful Equations				118
4.2.5.1 The relation between the wetted				118
perimeter "P" and the discharge "Q"				
4.2.5.2 The relation between the top water width				120
" w_{τ} " and the discharge "Q".				
4.2.5.3 The relation between the hydraulic radius				122
"R" and the average water depth "D".				
4.2.5.4 The relation between the ratio of				122
(B/D) and the discharge "Q".				
4.2.5.5 The relation between the ratio of				125
water cross section area to average depth				
(A/D) and the wetted perimeter "P"				
4.3 APPLICATION OF DEDUCED EQUATIONS IN			_	127
CANAL DESIGN	•	•	·	
4.3.1 Design Procedure				129
4.3.2 Comments on the Solved Examples	•	•	•	
4.4 GENERAL APPLICATION OF THE DEDUCED				
	•	•	•	1)(
EQUATIONS AND RECOMMENDATIONS				
4.5 LIMITATION OF THE DEDUCED EQUATIONS	_			130

4.6 COMPARISON BETWEEN THE DESIGN USING	1
THE EQUATIONS OF THE PRESENT INVESTIGATION	
WITH THOSE OF OTHER INVESTIGATORS	
4.7 FINAL COMMENTS ON OTHER INVESTIGATORS 1	49
WORK WITH RESPECT TO THE PRESENT INVESTIGATION	
CHAPTER 5	
GENERAL CONCLUSIONS AND RECOMMENDATIONS	
5.1 INTRODUCTION	53
5.2 CONCLUSIONS	54
5.2.1 The Relation Between the Water Cross 1	54
Section "A" and the Discharge "Q"	
5.2.2 The Relation Between the Average Depth 1	55
"D" and the Discharge "Q"	
5.2.3 The Relation Between the Hydraulic 1	56
Radius "R" and the Discharge "Q"	
5.2.4 The Relation Between the Average	56
Velocity "V" and the Value (R3S)	
5.2.5 Additional Equations for Some Special Cases 1	57
5.2.6 Comparison With Other Investigators	58
5.3 RECOMMENDATIONS	59
5.4 SUMMARY	61
APPENDIX A	
A.1 Contents of Appendix (A)	75
A.2 Velocity and Discharge Measurements 1	75
A.3 Collected Data	76
APPENDIX B	
R 1 Contents	1 -

B.2	Solid	Suspe	ensions	in	Water	•		 -	-	-	•	•	•	212
B.3	Grain	Size	Distri	out	ion of	Soi	1 .	 -	•					212
D 1	Faho (- - ounde	an Chart										_	212

LIST OF FIGURES

Figure No	<u>Title</u>	<u>Page</u>
2.1 Uniform Flow in O	pen Channel	9
2.2 Maximum Unit Trac	tive Force in Terms of WYS	25
2.3 Forces Acting on	Soil Particle on Channel Side	26
Slopes		
2.4 Angles of Repose	of Noncohesive Material	29
2.5 Unit Tractive For	ces for Canals in Noncohesive	30
Material		
2.6 Permissible Unit	Tractive Force for Canals in	31
Cohesive Material	•	
2.7 Comprehensive Cha	rt Yielding Critical Drag	34
Intensity as a Fu	nction of Grain Diameter	
2.8 Limiting Tractive	e Forces Recommended for	35
Canal Design (E.W	l. Lane)	
2.9 Design of Stable	Trapezoidal Canals and Drains	49
with Side Slope 1	1:1	
2.10 Non-Silting Cana	ls Chart Haseel	51
El-Difrawy Chart	:	
2.11 Standard Type fo	or Egyptian Canals	52
2.12 Canal Discharge		53
2.13 Diagram of Disch	arge Below 1.5 m³/sec	54
Side Slope 3:2		
2.14 Proposed Diagram	for the Design of Trapezoidal	55
Non-silting Cana	als in Egypt	
2.15 Design Charts Fo	or Trapezoidal Canal Sections	57
(side slope 1:1)		