AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

MODEL TO DETERMINE THE EFFECT OF

SPEED ON TRAFFIC ACCIDENTS

BY

MONA HUSSEIN MOHAMED ABD ALLAH

M. H

A thesis

submitted in partial fulfillment for the requirements of the Degree of Doctor of Philosophy in Civil Engineering

40263

Supervised by

Prof. Dr. Mohamed Salah El-Din El-Hawary
Prof. Dr. Ibrahim Ahmed El-Dimeery
Assoc. Prof. Dr. K. Nabil A. Safwat

APPROVAL SHEET

MODEL TO DETERMINE THE EFFECT OF SPEED ON TRAFFIC ACCIDENTS

by

Hona Hussein Hohamed Abd Allah

M. Sc. Civil Engineering, Ain Shams University, 1987.

This dissertation for the Ph. D. degree had been approved by:

<u>Signature</u>

1. Prof. Dr. Ibrahim A. El-Dimeery

Prof. of Transportation Planning and Traffic Engineering, Faculty of Engineering, Ain Shams University, Egypt.

Prof. Dr. Ali S. Huzayyin
 Prof. of Transportation, Planning
 and Traffic Engineering,
 Faculty of Engineering,
 Cairo University, Egypt.

Prof. Dr. Said Easa
 Prof. of Transportation Planning and Traffic Engineering,
 Department of Civil Engineering Lakehead University, Canada.

ارس تقره الان

4. Dr. Kamal N. Safwat
Associate Prof. of Transportation Planning
Department of Urban and Regional Planning
Texas A&M University, USA.

NS

STATEMENT

his dissertation is submitted to Ain Shams University for the legree of Doctor of Philosophy in Civil Engineering.

The work included in this dissertation was carried out from 1989 to 993 under the channel system between the department of Public Torks, Ain Shams University and Department of Urban and Regional Clanning, Texas A & M University.

o part of this dissertation has been submitted for a degree or a ualification at any other University or Institution.

Date: 2/11/1993

signature: Abdallah

Name: Mona Hussein Mohamed Abd Allah

ACKNOWLEDGMENT

All grace is due to ALLAH, Creator and Sustainer of the Universe, who gave me the determination to successfully complete my doctorate degree, and peace and blessing be upon Prophet Mohamed. I gratefully pray to Allah to accept all of my sincere effort in this thesis in my balance in the Day of Judgement.

First, I wish to express my deepest gratitude to my doctoral committee members; Dr. Mohamed S. El-Hawary, Dr. Ibrahim A. El-Dimeery and Dr. K. Nabil A. Safwat. My great thanks to Dr. Salah El-Hawary for his guidance throughout this work. My deepest honor and greatest thanks to Dr. Ibrahim El-Dimeery for his valuable discussion and scientific effort throughout this work and finally in reviewing the thesis in the final shape. In fact, I want to thank Dr. El-Dimeery for a ten years of great and ideal supervision since my graduation in 1983, I really appreciate that. My sincere appreciation to Dr. Nabil Safwat for his valuable suggestion and fruitful discussion during my visit to Texas A & M University.

Sincere appreciation to The Academy of Scientific Research and Technology (ASRT), and all the staff of the Traffic Police Department for their help during the data collection stage of this thesis.

A lot of thanks should also be extended to all my friends and colleagues in Texas A & M University for their academic and moral support.

Finally, my unlimited gratitude to my mother and my sister for

their prayers and moral encouragement, and to my husband "Salah" and my handsome son "Mohammed" for their patience and perseverance especially during the one year period of my research work in U.S.A. My sincere appreciation to my mother in law for her care of my son during my visit to Texas A & M university.

To My Mother "Nafesa"

My Husband "Salah"

& My Son "Mohamed"

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION	8
1.1 Introduction	8
1.2 Objectives and Scope	.10
1.3 Research Hypotheses	10
1.4 Data Collection	11
1.5 Methodology	12
CHAPTER 2 Literature Review	15
2.1 Introduction	15
2.2 Statistics on accidents	15
2.2.1 Accident Severity	19
2.2.2 Collision Type	19
2.2.3 Road surface conditions	22
2.2.4 Accident Weekly Distribution	23
2.2.5 Summary	24
2.3 Accidents as related to traffic flow features	3 25
2.3 Accidents as felaced to traffic flow features	
2.3.1 Traffic Volume	225
2.3.1 Traffic Volume	
2.3.1 Traffic Volume	225
2.3.1 Traffic Volume	225
2.3.1 Traffic Volume	225 25
2.3.1 Traffic Volume	225 25
2.3.1 Traffic Volume	225 25 26
2.3.1 Traffic Volume	225 25 26 27
2.3.1 Traffic Volume	225 25 26 27
2.3.1 Traffic Volume	225 25 26 27 29
2.3.1 Traffic Volume	225 25 26 27 29
2.3.1 Traffic Volume	225 25 26 27 29
2.3.1 Traffic Volume	225 25 26 27 29 36

2.6.3 Loglinear Models	5 7
2.7 Accidents on Urban Areas	58
2.8 Comments	71
CHAPTER 3 Modelling	73
3.1 Data Collections and Computation of the	
variables	73
3.1.1 The Cairo- Alexandria	
Agricultural Road	73
3.1.2 Accident Data	76
3.2 The Independent Variables	77
3.2.1 Traffic flow characteristics	77
3.2.2 Geometric design characteristics	78
3.2.3 Roadside Activity	79
3.3 Multiple Regression Analysis	81
3.3.1 Model Development	81
3.3.2 Model Validation	82
3.3.3 Model Analysis	85
3.3.3.1 The Effect of Traffic Flow	
Parameters	85
3.3.3.2 The Effect of Pavement Width	87
3.3.3.3 The Effect of roadside	
activity	87
3.4 Prediction of the Hazard Limit (HL)	88
3.4.1 Introduction	88
3.4.2 The hazard Limit Procedure	89
3.4.3 Traffic Speed As A Control Parameter	90
3.4.4 Pavement Width As a Control	
Parameter	91
3.5 Comments	97
3.6 Discriminant Analysis Procedure	97
2 6 1 7	0.11

3.6.1.1 Direct Method	99
3.6.1.2 Stepwise Method	99
3.6.2 The predictive ability of the	
function	100
3.6.2.1. The Resubstitution Method .	100
3.6.2.2. The Hold Out Method	100
3.6.3 Adequacy of The Technique	102
3.7 Model Estimation	103
3.7.1 Inequality of Group Means	104
3.7.2 Equality of Variance Covariance	
Matrices	104
3.8 Model Analysis	108
3.9 Variables Contributions to the Model	108
3.10 Alternative Policies For Accident	
Reductions	112
3.11 Results and conclusions	118
3.12 General Comments	120
CHAPTER 4 The Non-parametric Model	122
4.1 Introduction	122
4.2 Philosophy of The Non-parametric Model	122
4.3 Binary decision tree Algorithm	125
4.3.1 Tree Construction	125
4.3.2 Classification Rule	127
4.4 The Proposed Model	128
4.5 Developing The Computer Program	131
4.6 Model Analysis	137
4.7 The Classification Tree Analysis	139
4.7.1 Between Nodes Analysis	139
4.7.2 Within Nodes Analysis:	146
4.8 Summary of The Non-parametric Model Results	151

4.9 Advantages of The Non-parametric Model over
the Other Two Models
4.9.1 The Non-parametric Model and The
Discriminant Model 154
4.9.2 The Non-parametric Model and The
Regression Model 157
CHAPTER 5 Summary, Conclusions and Recommendations . 161
5.1 SUMMARY
5.2 Results and Conclusions 166
5.2.1 Regression and Discriminant Models 166
5.2.2 The Non-parametric model 168
5.2.3 Cairo-Alexandria Agricultural Road 169
5.2.4 Models' comparisons 170
5.3 Recommendations
REFERENCES
APPENDICES
APPENDIX 1
1.1 THE STATISTICAL ANALYSIS AND RESULTS OF THE
REGRESSION MODEL
1.2 THE CORRELATION MATRIX OF THE VARIABLES 185
APPENDIX 2
2.1 THE DISCRIMINANT ANALYSIS PROCEDURE PROGRAM 187
2.2 ADEQUACY OF THE MODELS
APPENDIX 3
THE FORTRAN PROGRAM OF THE Non-parametric MODEL
'HAMADA.FOR'
APPENDIX 4
THE STATISTICAL RESULTS OF THE Non-parametric MODEL WITH
TERMINAL CRITERION (α =2%) OF THE TRAINING SAMPLE 229

LIST OF FIGURES

Figu	re Figure Contents Pag	je
2.1	Greater Cairo Zones That Included In The Accid	lent
	Study	17
2.2	Highway System Of Arab Republic Of Egypt	18
2.3	Relationship between Speed and Accident Involvement	nt
	Rate	32
3.1	Relationship between Speed and Accident rate	94
3.2	Relationship between Pavement Width and Accident	
	Rate	94
3.3	Relationship between Speed and Accident rate	95
3.4	Relationship between Pavement Width and Accid	dent
	Rate	95
3.5	Relationship between Speed and Accident rate	96
3.6	Relationship between Pavement Width and Accid	lent
	Rate	96
3.7	Graphical Representation of Two Groups and Two	
	Variables	101
3.8	Probability of Case Membership to The Haz	zard
	Group	114
4.1	The Model Flow Charts	134
4.2	Test Feature (T) Computation Procedure	135
4.3	Classification Procedure of The Test Data	136
4.4	Construction of The classification	
	Tree (alpha=2%)	144

LIST OF TABLES

Table	s Table Contents	Page
1.1	Total Accidents Cost in 1988	9
2.1	Accident Severity on the Intercity Roads	20
2.2	Collision types of accidents on 1988	21
2.3	Urban / Rural Accidents on 1988	22
2.4	Accidents and Road Surface Conditions on 1988	23
2.5	Accident Distribution Among The Weekdays	24
3.1	Accidents on the Six Intercity Roads in Egypt	75
3.2	Accidents Number Per Site for The Study Period	77
3.3	Ranges of the Observed Data of the Indepe	endent
Varia	bles (All Sites)	80
3.5	Level of Significance of the Predictors in th	e
ŀ	Models	84
3.6	Resubstitution Classification of the Quad	dratic
1	Model	106
3.7	Resubstitution Classification of the Linear	
Model		106
3.8	Hold out Classification of the Linear model	107
3.9	Hold out Classification of the Quadratic Mode	1 108
3.10	Model Coefficients in Standardized and	
	Unstandardized Form	109
3.11	Variables Contribution in the Model	111
3.11	Alternative Policies For Accidents' Reduction	
	(case A)	116
3.11	Alternative Policies For Accidents' Reduction	
	(case B)	117
4.1	Classification Matrix of The Training Sample	
	(alpha = 2%)	137

4.2	Classification Matrix of The Training Sample	(alpha
= 5%)		137
4.3	Classification Matrix of The Test Sample	
	(alpha = 2%)	138
4.4	Classification Matrix of The Test Sample	
	(alpha = 5%)	138
4.5	Classification Conditions at The Intermediate	
	Nodes	145
4.6	Split Process Inside Node 1	147
4.7	Split Process Inside Node 2	148
4.8	Split Process Inside Node 3	149
4.9	Split Process Inside Node 4	149
4.10	Split Process Inside Node 7	149
4.11	Comparison between Model "B" and Model "C"	159

CHAPTER 1

INTRODUCTION

1.1 Introduction

Analysis of traffic accidents is of a vital importance to traffic engineers. The tremendous cost of motor vehicle accidents causes not only much suffering and misery but also large economic losses. For instance the average economic losses in Egypt due to fatalities in traffic accidents on Cairo-Alexandria Agricultural Road exceeded one hundred and fifty million Egyptian pounds during 1988 while the costs of the total accidents were about two hundred million Egyptian pounds (see Table 1.1 which shows the total costs due to accidents on the Egyptian Intercity Road Network [1]). The figures included in this table are a part of a study carried out in the early of 1980's on six intercity roads in Egypt as well as the street system in three urban areas in Greater Cairo. A summary of this study will be illustrated in chapter 2.

Table 1.1 reveals that the total cost of accidents in 1988 on the six roads, under study, was about four hundred fifty million pounds of which 44% was incurred on the Cairo-Alexandria Agricultural road (AlxAgr.). This reflects considerable economic losses due to traffic accidents. It is believed that accidents' studies on the Egyptian Highway Network are limited. A comprehensive investigation of this serious problem and its possible remedies has yet to be undertaken. This research represents an attempt towards that end.