
EFFECTS OF MINERAL NUTRITION ON SURVIVAL AND SYMBIOTIC ASSOCIATION OF SOME RHIZOBIAL STRAINS

Thesis

Submitted in partial fulfilment of the requirements for the degree

of Doctor of Philosophy In Botany (Microbiology)

By

MONA MOHAMED ABOUEL NOUR

B.Sc. in Botany 1983 M.Sc. in Botany 1990

Botany Department Faculty of Girls Ain Shams University 1995

﴿ وقل م ك بردنى علما ﴾

ريله الصلاق العظيم

Approval Sheet

Name: Mona Mohamed Abou El Nour

Title: Effects of Mineral Nutrition on Survival And

Symbiotic Association of Some Rhizobial Strains.

This Thesis has been Approved by:

1-	Prof. Dr. Mehrashan Taha El-Mokadem
	the state of the s
2-	Prof. Dr. Fatma Abd El-Wahab Helemish
	های داری این با بیش بیش باش باش این این این بیش بیش بیش بیش این بیش این این این بیش این این این این این این ای این داری داری این این این این این این این این این ای

S. Abdel Wakais

3- Prof. Dr. Samir M. Abd El-Wahab

TO MY PARENTS

ACKNOWLEDGEMENT

I would like to express my deep thanks and sincere gratitude to *Prof. Dr. Mehreshan Taha El Mokadem*, Botany Department, Faculty of Girls, Ain Shams Univ. and *Prof. Dr. Fatma Helemish*, Botany Department, Faculty of Girls, Ain Shams Univ. for their active supervision, valuable criticism and continuous guidance.

I feel pleasure to record my whole hearted and sincerest gratitude to *Prof. Dr. Samir M. Abd El-Wahab*, Soil and Water Res. Institute, Agricultural Res. Center, Giza, Egypt for his supervision, endless generosity, deep interest, valuable advices and for giving every possible help throughout the different stages of the work.

I would like to express my appreciation to *Prof. Dr.*Amal Shehab Head of Botany Department, Faculty of Girls,
Ain Shams Univ., for her support and providing the required facilities.

Grateful acknowledgment and best thanks are also extented to all staff of Biofertilizers Production Unit, Soil and Water Research Institute, Agricultural Res. Center, Giza, Egypt for sincere and intensive help and for providing all needed facilities necessary for giving me the chance to carry out this work.

Thanks are also presented to *Dr. Magdi M. Ismail*, Lecturer of Microbiology, Faculty of Agric., Ain Shams Univ. for providing me a needed help in this study.

Finally, I would like to show my sincere gratitude to my dear parents for their encouragement and continuous help which made this work possible.

Contents

	rage
1- INTRODUCTION	1
2- REVIEW OF LITERATURE	4
2.1- Role of mineral nutrients on free living rhizobia	5
2.1.1- Effect of mineral nutrients on growth of rhizobia	5
2.1.2- Rhizobial production of siderophore.	
2.2- The effect of mineral nutrients on.	19
2.2.1- Infection and nodule development.	
2.2.1.1- Iron requirements	23
2.2.1.2- Zinc requirements	30
2.2.1.3- Molybdenum requirements	32
2.3- Symbiotic performance and nitrogen fixation	35
2.3.1- Effect of combined elements	36
2.3.2- Effect of iron	
2.3.3- Effect of zinc	46
2.3.4- Effect of molybdenum.	52
2.4- The effect of dual inoculation with Rhizobium spp. and	
vesicular mycorrhizal fungi on nodulation	
and N ₂ -fixation	56
3- MATERIALS AND METHODS	67
3.1. Materials	67
3.1.1. Rhizobial strains	67
3.1.2. Vesicular arbuscular mycorrhiza (VAM)	68
3.1.3- Media	68
3.1.3.1- Yeast extract mannitol medium (YEM)	
3.1.3.2- Broth mannitol medium (BM)	68
3.1.3.3- Congo-red yeast extract mannitol agar medium	69
3.1.3.4- Chrome Azurol-S agar medium (CAS).	69
3.1.4- Soil used	
3.1.5- Carriers used	
3.1.6- Seeds	
3.1.7- Plant nutrients.	
3.1.7.1- Fertilizers	
3 1 7 9 Mineral nutrients	74

	Page
3.2- Methods	7 4
3.2.1- Growth and survival of rhizobial strains as affected by	
different levels of micronutrients	74
3.2.1.1- In lequid culture :	74
3.2.1.2- In carriers	76
3.2.2- siderophore detection	77
3.2.3- Assessment of the symbiotic performance of	
rhizobial strain	
3.2.4. Evaluation and assays	80
3.2.5- Statistical analysis	81
4- EXPERIMENTAL RESULTS	82
4.1- Effect of molybdenum on growth and survival	
of rhizobia	
4.1.1- Bradyrhizobium japonicum strains	82
4.1.2- Rhizobium leguminosarum bv. viceae strains	83
4.1.3- Rhizobium leguminosarum bv. phaseoli strains	84
4.2- Effect of Fe on growth and survival of rhizobia	
4.2.1- Bradyrhizobium japonicum strains	89
4.2.2- Rhizobium leguminosarum bv. viceae Strains.	
4.2.3- Rhizobium leguminosarum bv. phaseoli strains	92
4.3- Effect of zinc on growth and survival of rhizobia	97
4.3.1- Bradyrhizobium japonicum strains	97
4.3.2- Rhizobium leguminosarum bv. viceae strains	98
4.3.3- Rhizobium leguminosarum bv. phaseoli strains	99
4.4- Effect of combined elements on growth and survival	
of some rhizobial strains	104
4.5- Detection of siderophore production in some	40=
rhizobial strains	107
4.6- Influence of the optimum concentrations of the	
combined elements (Mo, Fe and Zn) on the survival	
and longevity of some rhizobial strains in two carrier	
materials (peat and vermiculite)	
4.6.1- Bradyrhizobium japonicum strain USDA-110.	
4.6.1.1- In peat - based inoculant,	
4.6.1.2. In vermiculite-based inoculant	113

	Page
4.6.2- Rhizobium leguminosarum bv. viceae strain	
ICARDA-441	116
4.6.2.1- In peat-based inoculant	116
4.6.2.2- In vermiculite-based inoculant.	117
4.6.3- Rhizobium leguminosarum bv. phaseoli strain ARC-300	
4.6.3.1- In peat-based inoculant.	121
4.6.3.2- In vermiculite-based inoculant.	122
4.7- Evaluation of the symbiotic performance of	
B. japonicum strain as affected by the application	
of some microelements and VAM	125
4.7.1- Nodulation status	126
4.7.2- Growth and dry weight of soybean plants	128
4.7.3- Nitrogen content.	
4.7.4- Iron and zinc accumulation in soybean tissues	
4.7.5- Seed index	
5- DISCUSSION	149
5- SUMMARY	169
- REFERENCES	175
R ARARIC SUMMARY	

List of Tables

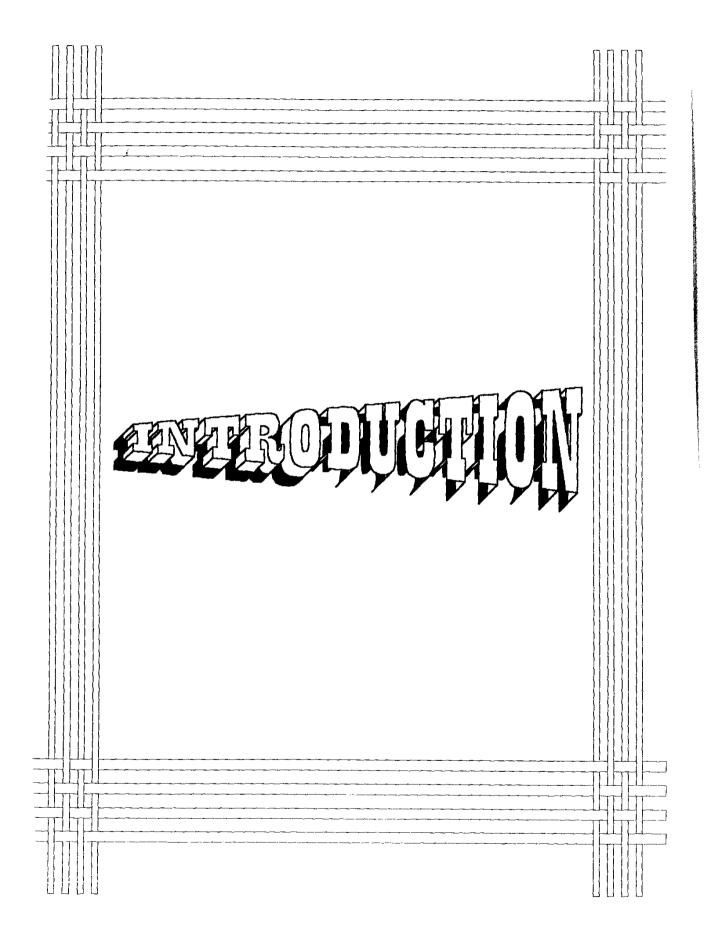

Table. №2.	Title	Page
1	Physical and chemical analysis of the used soil	72
2	The optimum concentrations of Mo, Fe and Zn required for rhizobial strains.	76
3	Effect of various concentrations of Mo on growth and survival of <i>Bradyrhizobium japonicum</i> , <i>Rhizobium</i>	
	leguminosarum bv. viceae and Rhizobium leguminosarum bv. phaseoli strains	85
4	Effect of various concentrations of Fe on growth and survival of Bradyrhizobium japonicum, Rhizobium leguminosarum bv. viceae and Rhizobium leguminosarum bv. phaseoli strains	93
5	Effect of various concentrations of Zn on growth and survival of Bradyrhizobium japonicum, Rhizobium leguminosarum bv. viceae and Rhizobium leguminosarum bv. phaseoli strains	100
6	Collection of the optimum concentrations of Mo, Fe and Zn (ppm) required for the growth of the studied rhizobial strains.	106
7	The effect of the optimum concentrations of the combined elements (Mo, Fe and Zn) on survival of the rhizobial strains.	106
8	Detection of siderophore production for the studied rhizobial strains.	109
9	Influence of the optimum concentrations of Mo, Fe and Zn ions on growth and survival of Bradyrhizobium japonicum (USDA-110) in peat carrier.	114

Table. №.	Title	Page
10	Influence of the optimum concentrations of Mo, Fe and Zn ions on growth and survival of	
	Bradyrhizobium japonicum (USDA-110)	
	in vermiculite carrier	114
11	Influence of the optimum concentrations of Mo,	
	Fe and Zn ions on growth and survival of Rhizobiu.	m
	leguminosarum bv. viceae (ICARDA-441)	
	in peat carrier	119
12	Influence of the optimum concentrations of Mo,	
	Fe and Zn ions on growth and survival of Rhizobiu.	m
	leguminosarum bv. viceae (ICARDA-441)	
	in vermiculite carrier	119
13	Influence of the optimum concentrations of Mo,	
	Fe and Zn ions on growth and survival of Rhizobiu	m
	leguminosarum bv. phaseoli (ARC-300) in peat car	rier 123
14	Influence of the optimum concentrations of Mo, Fe	;
	and Zn ions on growth and survival of Rhizobium	
	leguminosarum bv. phaseoli (ARC-300)	
	in vermiculite carrier	123
15	Growth, nodulation and symbiotic performance of	
	soybean plant as influenced by some microelements	3
	(Mo, Fe and Zn) application. [45 days]	135
16	Growth, nodulation and symbiotic performance of	soybean
	plant as influenced by some microelements	
	(Mo, Fe and Zn) application. [75 days]	136
17	Fe and Zn content (ppm) of soybean plants as affect	cted
	with rhizobial, mycorrhizal inoculation and	
	microelements application	140
18	N %, Fe and Zn content (ppm) of soybean seeds	
	as affected with rhizobial and mycorrhizal	
	inoculation and microelements application	145

List of Figures

Fig. Nº.	Title	Page
1	Effect of various concentrations of Mo on growth and survival of <i>Bradyrhizobium japonicum</i> strains	86
2	Effect of various concentrations of Mo on growth and survival of <i>Rhizobium leguminosarum</i> by. viceae strains.	87
3	Effect of various concentrations of Mo on growth and survival of <i>Rhizobium leguminosarum</i> by. <i>phaseoli</i> strains.	88
4	Effect of various concentrations of Fe on growth and survival of <i>Bradyrhizobium japonicum</i> strains	94
5	Effect of various concentrations of Fe on growth and survival of <i>Rhizobium leguminosarum</i> by. viceae strains.	95
6	Effect of various concentrations of Fe on growth and survival of Rhizobium leguminosarum by. phaseoli strains.	96
7	Effect of various concentrations of Zn on growth and survival of <i>Bradyrhizobium japonicum</i> strains.	101
8	Effect of various concentrations of Zn on growth and survival of <i>Rhizobium leguminosarum</i> by. viceae strains.	102
9	Effect of various concentrations of Zn on growth and survival of <i>Rhizobium leguminosarum</i> by. phaseoli strains.	103

Fig. №2.	Title	Page
10	Influence of the optimum concentrations of Mo, Fe and Zn ions on growth and survival of Bradyrhizobium japonicum (USDA-110) in peat and vermiculite carriers.	115
11	Influence of the optimum concentrations of Mo, Fe and Zn ions on growth and survival of <i>Rhizobium</i> leguminosarum bv. viceae (ICARDA-441) in peat and vermiculite carriers.	120
12	Influence of the optimum concentrations of Mo, Fe and Zn ions on growth and survival of <i>Rhizobium</i> leguminosarum bv. phaseoli (ARC-300) in peat and vermiculite carriers.	124
13	Dry weight of soybean plants as influenced by some microelements (Mo, Fe and Zn) application after 45 and 75 days.	137
14	Nitrogen content of soybean plants as influenced by some microelements (Mo. Fe and Zn) application after 45 and 75 days	138
15	Fe and Zn concentration (ppm) of soybean plants as affected with rhizobial, mycorrhizal and microelements application after 45 and 75 days	141
16	N%, Fe and Zn content (ppm) of soybean seeds as affected with rhizobial and mycorrhizal inoculation and microelements application.	146

1- Introduction

When plant nutrient problems are observed in field, one is faced with the question "what is the best and most economical way to solve this problem?". Actually, workers have used soil amendments to correct deficiencies of macro and microelements, this possible solution can completed by using different kinds microorganisms, which are known to play a vital roles in physiological processes in ecosystem. the most benificial contributions of soil microorganisms to plant development is the supply of nutrients essential to plant growth.

In developing countries where food consumption exceeds production, the greater use of legumes can have a considerable beneficial effect, and therefore the symbiotic relationship between root-nodule of the genus *Rhizobium* and legumes is of special significance to legume production, as seed inoculation with effective strains of *Rhizobium* proved to be a benificial practice to ensure effective nodulation, good growth and high yield.