Antioxidants in Chronic Pediatric Liver Diseases

Submitted for Partial Fulfillment of The Requirements of the Master Degree in Pediatrics.

618.923623 U.B.

By

Usama Beshara Morid

M.B,.Bch Faculty of Medicine Alex. University

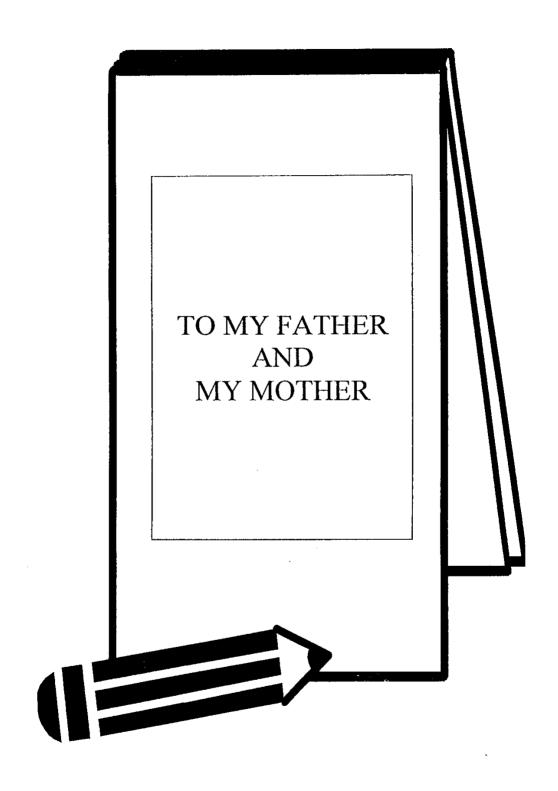
Supervisors

Dr. Zenab Anwar El Kabbany

Assistant Professor of Pediatrics
Faculty of Medicine
Ain Shams University

Dr. Eman Ahmed Zaki

Assistant Professor of Pediatrics
Faculty of Medicine
Ain Shams University


Dr. Amina Mohamed El gharieb

Lecturer of Biochemistry Faculty of Medicine Ain Shams University

Faculty of Medicine Ain Shams University 1999

ACKNOWLEDGMENTS

First and foremost, I thank my **GOD** who is my strength and my shield.

It is a great honor to me to express my sincere gratitude to **Dr. Zenab Anwar El Kabbany**, Assistant professor of pediatrics, Faculty of Medicine, Ain Shams University, for his masterly teaching, valuable advice, kind supervision and continuos encouragement throughout the work.

I am particularly indebted to **Dr. Eman Ahmed Zaki**, Assistant professor of pediatrics, Faculty of Medicine, Ain Shams University, for her meticulous supervision, continuos support, honest assistance and unlimited help throughout the whole work.

I wish to express my gratitude to **Dr. Amina Mohamed Elgharicb**, Lecture of Biochemistry, Faculty of Medicine, Ain Shams University, for her kind and active participation in the laboratory part of the work.

I wish to thank the patients and their parents for being cooperative during our study, and I wish them all best of health.

Also, I would like to thank my family without whom this thesis would never have been seen light.

Lastly, sincere appreciation is extended to every body who has shared in a way or another in the performance of this work.

LISTS

		Page
List (1)	Disorders producing chronic liver disease	2
List (2)	Causes of cholestasis	22
List (3)	Etiology of chronic hepatitis	42

LIST OF TABLES

		Page
Table (1):	Hepatic involvement in glycogen storage diseases	20
Table (2):	Endogenous and Exogenous	100
Table (3):	antioxidantsSynthetic antioxidants and	100
Table (3).	scavengers	101
Table (4):	Statistical comparison between our cases and controls as regards age	
791 1.1 (7)	distribution	131
Table (5):	Statistical comparison between cases and controls as regards sex distribution	131
Table (6):	Incidence of different presenting	131
2000 (0)	symptoms recorded among our cases	132
Table (7):	Ultrasonographic findings in our studied patients with chronic liver	124
Table (8):	diseases	134
	chronic liver diseases	135
Table (9):	Etiological classification of our studied cases with chronic liver	
Гable (10) :		136
	before treatment and controls (group II	
) as regards serum liver enzymes	136
Гable (11) :	Statistical comparison between group Ia	
	and controls as regards plasma level of	
	enzymatic antioxidants	138
Γable (12):	Statistical comparison between group Ia	120
	and controls as regards MDA	138

Table (13):	Comparison between group Ia and group Ib as regards hepatic	
Table (14) .	transaminasesStatistical comparison between group Ia	140
1 able (14):	and group Ib as regards enzymatic antioxidants	141
Table (15) :	Statistical comparison between group Ia	
	and group Ib as regards MDA	143
Table (16) :	Statistical comparison between group Ib and group II as regards hepatic	
	transaminases	143
Table (17):	Statistical comparison between group Ib and group II as regards enzymatic	
	antioxidants	145
Table (18):	Statistical comparison between group Ib	
	and group II as regards MDA	145

LIST OF FIGURES

		Page
Figure (1):	Metabolic pathways involved in	
	glycogen synthesis	7
Figure (2):	Causes of neonatal chlestasis	26
Figure (3):	Hepatic portoenterostomy for an	
	extrahepatic biliary atresia involving the	
	main right and left hepatic ducts and the	
	common bile duct (Type 3)	32
Figure (4):	Diagrammatic representation of	
	surgically correctable extrahepatic	
	biliary atresia (Type 1)	33
Figure (5):	The effect of exposure to hepatitis B	
	virus	44
Figure (6):	T-lymphocyte lysis of infected	
	hepatocytes and mechanisms of failure	
	of lysis in chronic hepatitis	47
Figure (7):	Phases of hepatitis B-infection	50
Figure (8):	Structure of HCV genome	55
Figure (9):	The metabolism of molecular	
	oxygen	61
Figure (10):	Scheme of the L-arginine / NO	
	pathway	66
Figure (11):	Formation of oxygen radical in the	
3 ()	hypoxanthine - xanthine oxidase	
	system	69
Figure (12):	Hypoxia - Reoxygenation injury	70
Figure (13):	Cytochrome oxidase system	72
Figure (14) :	Pathway for lipid peroxidation induced	
	by oxygen and other	
	radicals	77
Figure (15) :	Initiation and propagation of lipid	
_ ,	peroxidation	78
Figure (16) :	The reaction sequence for peroxidation	
	of polyunsaturated fatty acids (PUFAS)	
	in cell membrane	79

Figure (17):	DNA damage by free radicals	81
Figure (18) :	The action of antioxidant enzymes	88
Figure (19) :	Antioxidant enzymatic pathways for	
	reduction of superoxide to water	89
Figure (20) :	•	
6 \ /	enzymatic detoxification of hydrogen	
	peroxide	90
	(H ₂ O ₂)	
Figure (21):	Cytochrome oxidase system and	
~ ~ g ~~ (~~) *	enzymatic antioxidants	91
Figure (22) :		7.
- 18 () (that terminates lipid peroxidation in cell	
	membrane	96
Figure (23) :	Mechanisms of hepatocyte necrosis by	, ,
~ .g () .	toxic bile salts	114
Figure (24):	Frequency of different presenting	
	symptoms recorded among cases	134
Figure (25) :	Comparison between group Ia and	
9 ()	controls as regards serum liver	
	enzymes	137
Figure (26) :	Statistical comparison between group Ia	
	and controls as regards MDA	139
Figure (27) :		
	after treatment as regards GSH	
	reductase	142
Figure (28) :		
	and controls as regards hepatic	
	transaminases	144
Figure (29) :		
_ • •	and controls as regards MDA	146

LIST OF ABBREVIATION

SOD Superoxide dismutase
GSH Reduced glutathione
GSD Glycogen storage disease
EHBA Extrahepatic biliary atresia

I.V.C Inferior vena cava

SLE Systemic lupus erythematosis

DIC Disseminating intravascular coagulopathy

HBs Ag Hepatitis B surface antigen

HBV Hepatitis B virus

HBc-antibody Hepatitis B core antibody HLA Human leukocytic antigen

Ts T suppressor cell
Tc T cytotoxic cell
HCV Hepatitis C virus

RIBA Radio immune blot assay PCR Polymerase chain reaction

IFN Interferon

GGT Gamma glutamyl transferase
DNA Deoxy ribonucleic acid
DNA Dibamalain aid

RNA Ribonucleic acid

m-RNA Messenger - ribonucleic acid

ALT Alanine transaminase
AST Aspartate transaminase
NS Non Structure protein

Fig. Figure Oxygen

Ō₂ or O⁻₂Superoxide radicalH₂O₂Hydrogen peroxideCTComputed tomography

OH Hydroxyl radical

H₂O Water
e' Electron
Fe +++ Ferrous ion
Fe ++++ Ferric ion

NO Nitric oxide radical

ONOO Peroxynitrite

HOCI Hypochlorous acid

Cl' Chloride ion Hydrogen ion

EDRF Endothelium derived relaxing factor

GTP Guanosine tri-phosphate

cGMP Cyclic guanosine monophosphate

ATP Adenosine tri-phosphate
AMP Adenosine mono-phosphate
IMP Inosine mono-phosphate
CSF Cerebrospinal fluid

Ca +2 Calcium ion

NOS Nitric oxide synthetase

Hx Hypoxanthine

EAA Excitatory amino acids XDH Xanthine dehydrogenase

XO Xanthine oxidase

Cu Cupper

Ċ Carbon centered radical

O₂ Peroxyl radical

--Ċ-

H₂O 1 Lipid hydroperoxides

PUFA Polyunsaturated fatty acid

MDA Malondialdehyde

HIV Human immune deficiency virus

Zn Zinc

Mg Magnesium

GSH-PX Glutathione peroxidase

Se Selenium

GSSG Oxidised glutathione
TH Tochopherol (Vitamin E)
T Tochopherol radical

BPD Bronchopulmonary dysplasia

LD Lactic dehydrogenase

GCDC Glycochenodeoxycholic acid