Response of plasma vasoactive intestinal polypeptide and epinephrine to exercise loading in asthmatic patients and its relation to their cardiopulmonary fitness

Thesis
Submitted for partial fulfillment of MD degree in Pediatrics

Ву

Abcer Salah El- Din El Sakka M.B.B.CH,M.SC Pediatrics

Supervised By

Professor Dr. Karima A.Abd El Khalek.

Professor of Pediatrics Ain Shams University

6=320

Professor Dr. Magda Yehia Hussein

Assistant Professor of Pediatrics Ain Shams University

Assistant Professor Dr. Hoda Mohammed El-Gendy

Assistant professor of Clinical Pathology. Ain Shams University.

Faculty of Medicine Ain Shams University Cairo- Egypt 1999.

Acknowledgment

Praise be to God for giving me the will and effort to complete this work.

I would like to express my gratitude to Professor Dr. Karima Ahmed abdel Khalek Professor of Pediatrics, Ain Shams University. In fact, I can't find adequate words to express my gratitude for her wise guidance and encouragement.

My sincere gratitude to Professor Dr Magda Yehia Hussein, Professor of Pediatrics, Ain shams university. I would like to thank her for her meticulous supervision and generous help.

My gratitude to Assistant Professor Dr. Hoda Mohammed El Gendy, Assistant professor of Clinical Pathology, Ain Shams university. Actually without her tremendous effort and sincere guide it would be difficult to proceed with laboratory work in this thesis. I can't ignore the role of my patients with whom I spent a lot of time to accomplish this work.

I would like to thank my family for their support and encouragement.

CONTENTS

		Page
-Introduction	n	1
-Aim of the v	work	2
-Review of li		
Chapter	1: Definition of asthma	3
- 1	Classification of asthma	4
	Asthma variants	5
	Exercise -Induced Asthma(EIA)	7
	*Diagnosis	8
	*Factors Determining EIA	
	-Temperature and humidity.	
	-Ventilatory response (Hyperventi	ilation)
	*Stimulus for EIA	16
	-Thermal stimulus	
	a-Respiratory heat exchange	
	b-Airway cooling	
	c-Rapid rewarming	
	-Osmotic Stimulus	
	a-Water content of inspired air	r
	b-Respiratory water loss.	
	c- Hypertonicity of airway lin	ing
	fluid.	
	*Proposed Mechanisms for EIA	24
	A-Vascular Hypothesis	
	B-Mediator release hypothesi	is
	-Mediator level	
	Histamine	
	Leukotreine	
	Prostanoid	
	C- Inflammatory cell activation	on

-Mast cell
-Neutrophil
-Eosinophil
-Platelet
-T lymphocyte
JT
D- Neurohormonal Hypothesis
-Catecholamine
-Atrial Natriuretic peptide
-Neuropeptides
*Unique features of EIA38
1-Late response
2-Refractory phase
– 2002400000 F
*Medical Management43
-B- agonists
-Antiinflammatory
-Theophylline
-Anticholinergics
-Investigating agents
Chapter II
Exercise Testing In Children57
*Treadmill Exercise Testing protocols.
*Physiologic aspects of exercise testing.
-Endurance time and aerobic fitness
-Defining a maximal exercise effort
-Cardiopulmonary response to exercise
A-Acute cardiopulmonary response to
exercise
O/IO/O/O

B-Responses of pulmonary system to exercise a-Ventilatory anaerobic threshold b-Exercise ventilation c-Gas exchange *Exercise testing in pulmonary disease82 -Abnormal response to exercise testing In asthma
Chapter III
Pulmonary function tests84
 Tests of lung volumes
 -Vital capacity
 -Absolute lung volumes
 Tests of airway function
•Spirometry
 -Peak expiratory flow
• -FEV1
• FVC
• FEF 25-75
hapter IV
Vasoactive Intestinal Polypeptide(VIP)103
-Localization
-Receptors
-Effect on airway secretion
-Vasoactive effect
-Neuromodulatory effects
-Antiinflammatory activity
-Possible abnormalies in asthma

Chapter V	
Circulating plasma catecholamines	112
*Plasma Catecholamines in normal humans	
*Plasma catecholamines in asthma	
*Exercise and plasma catecholamine in asthma	
*B adrenoceptor Blockade	
 B adrenoceptor blockade in asthma. 	
Subjects and methods	118
Results	131
Discussion	162
Summary and conclusion	176
Recommendations	179
References	

List of Figures

Page
Figure (1) Typical Exercise- induced asthma pattern10
Figure (2)Different treadmill protocols62
Figure (3) The response of basic hemodynamic and
metabolic variables from rest to a moderately high levels of
exercise
Figure (4) The relationship between cardiac output and
oxygen consumption67
Figure (5) and(6) The relationship between VO2 max and
age among boys and girls from 6 to 18 years70
Figure (7) Systolic, mean and diastolic pressure in relation
to cardiac output attained during exercise74
Figure (8). Determination of ventilatory anaerobic
Threshold
a tidal breath followed by maximal inhalation and
exhalation85
Figure (10). The divisions of lung volumes in normal and
asthmatic subjects86
Figure (11). Flow volume loop87
Figure (12). Changes in flow volume loop configuration
due to specific causes of airway limitation90
Figure (13) Partial flow volume loop
Figure.(14). Normal liability of peak expiratory flow rate.
94
Figure (15) Recording Peak Expiratory flow rate from
an asthmatic patient over a week period95

Figure (16) Mean VO2 max ml\kg\min at rest and peak of
exercise in cases
Figure (17) Mean Vo2 max ml\kg\min at rest and peak of
exercise in control group
Figure (18) Mean VO2 max ml\kg\min at peak exercise in
cases and controls135
Figure (19) Mean VO2 max ml\kg\min at rest in cases and
controls.
Figure(20) Mean Anaerobic threshold in cases and
controls. 137
Figure (21) Mean Heart rate in cases and controls at peak
of exercise 138
Figure (22) Mean % decrease FEV1 after exercise in cases
and controls139
Figure (23)Shows no correlation between VO2 max and %
decrease FEV1140
Figure (24) Mean VIP levels before and after exercise in
cases142
Figure (25) Mean VIP levels before and after exercise in
controls
Figure(26) Mean VIP levels after exercise versus %
decrease FEV1144
Figure(27) Mean Epinephrine results before and after
exercise in cases146
Figure(28) Mean Epinephrine results before and after
exercise in controls
Figure(29) Mean Epinephrine results after exercise in
controls and controls 148

Lists of table.

Table(1) Suggested classification of asthma
Table (2) Medications of Exercise- induced asthma 43
Table (3) The color zones of airway function as determined
by the peak expiratory flow rate and the liability
index97.
Table (4) Age and BSA in cases and controls131
Table (5) Exercise testing results(cases)150-151.
Table (6)Exercise testing results (controls)152
Table (7) Pulmonary function results (cases)154-155
Table (8) Pulmonary function results (controls)156
Table(9)Vasoactive intestinal polypeptide
results(cases)158
Table(10)Vasoactive intestinal polypeptide results
(controls)159
Table (11) Vasoactive intestinal polypeptide versus %
decrease FEV1160
Table (12) Epinephrine results (cases)161
Table(13) Epinephrine results(controls)161

List of abbreviations

EIA Exercise induced asthma.

BHR Bronchial hyperresponsiveness.

RHE Respiratory heat exchange.

ISH Isocapnic hyperventilation

ECP Eosinophilic cationic exchange.

PAF Platelet activation factor.

PHA Phytohemagglutinin.

PEFR Peak expiratory flow rate.

VAT Ventilatory Anaerobic threshold.

VE Minute ventilation.

R or RER Respiratory exchange ratio.

VT Tidal volume.

Fb Breathing frequency.

Ti Time for inspiration.

Ttot Total time for a breath.

FRC Functional residual capacity.

RV Residual volume.

VC Vital capacity.

TLC Total lung capacity.