بينيه النج النج النجي المناه النجي المناه النجي المناه المناه النجي ال

ASSESSMENT OF THE DOSIMETRIC CHARACTERISTIC OF SOME POLYMERIC FILMS

541.78

SUBMITTED TO

FACULTY OF SCIENCE

AIN SHAMS UNIVERSITY

in the fulfillment

of the requirements for

THE DEGREE OF DOCTOR OF PHILOSOPHY

IN CHEMISTRY

BY

ZAKARIA ISMAEEL ALI

(B.Sc. 1982, M.Sc. 1993)

NATIONAL CENTER FOR RADIATION RESEARCH

AND TECHNOLOGY

ATOMIC ENERGY AUTHORITY

1996

THESIS

ENTITLED

ASSESSMENT OF THE DOSIMETRIC CHARACTERISTICS OF SOME POLYMERIC FILMS

Pro. Dr. A . M . Rabie
Faculty of Science, Ain Shams University
Prof. Dr. A . A . El Miligy
NCRRT, AEA
Prof. Dr. A. H. Zahran A. A. M.
NCRRT, AEA
Prof. Dr. F. M. Abdel Rehim
NCRRT, AEA

Thesis Supervisors

HEAD OF CHEMISTRY DEPARTMENT

A-F.M-Fahmy PROF. DR. F. A. FAHMY

Approved

ACKNOWLEDGMENT

The author wishes gratefully to thank Prof. Dr. Abdel Gwad Rabie Chemistry Department, Faculty of Science, Ain Shams University for his supervision, continuous guidance and helpful discussion throughout this work.

The author wishes to express his deepest thanks and gratitude to Prof. Dr. A. H. Zahran and Prof. Dr. Ahmed. A. El Miligy, National Center for Radiation Research and Technology (NCRRT) for their supervision, continuous guidance and helpful discussion throughout this work.

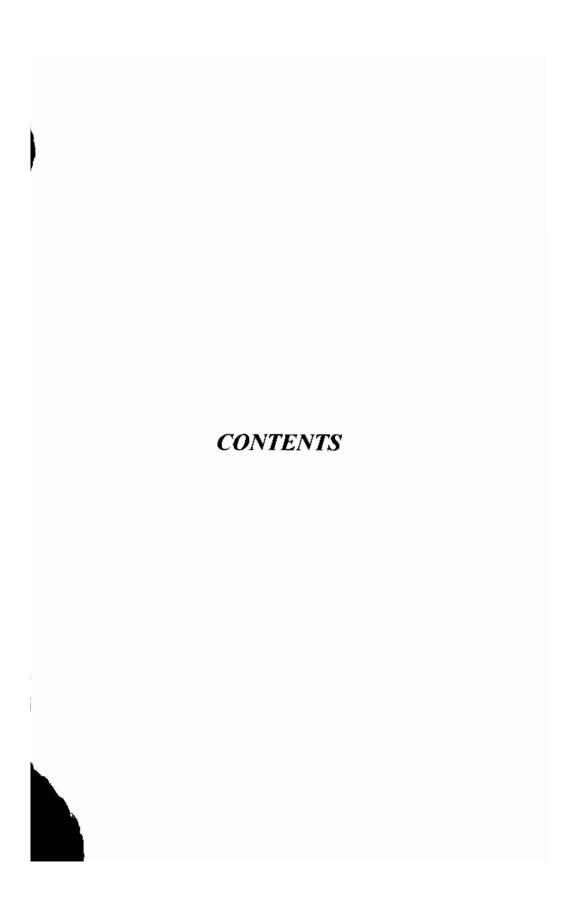
The author would like to express his highest appreciation and profound gratitude to Prof. Dr. F. M. Abdel Rehim, Dr. S. Ebraheem and Dr. A. A. Abdel Fattah, (NCRRT), for the proposal of the research topic and their supervision, guidance and continous help during the different phases of the work.

The author wishes to express his appreciation to A. Z. El-Behay Chairman of the NCRRT, for his continuos encourage and support.

The author wishes to express his appreciation to the Head of Radiation Chemistry Department, NCRRT, for his continous encourage. Also, many thanks are due to my colleagues in the Radiation Dosimetry and Radiation Chemistry Departments.

List of Publications

- 1- Improvement of the CTA Dosimetric Properties by the Selection of Readout Wavelength and the Calculation of the Spectrophotometric Quantity.
 - F. Abdel-Rehim, A. A. Abdel-Fattah, S. Ebrahim and Z. I. Ali.


Applied Radiation Isotopes, Vol., 47, No., 2, pp. 247-258, (1996).

- 2-Ultraviolet and Infrared Spectral Analysis of Irradiated Low Density Polyethylene (LDPE) Films; Correlation and Possible Application For Largedose Radiation Dosimetry.
 - A. A. Abdel-Fattah, S. Ebrahim and Z. I. Ali,

Submitted for publication in Journal of Radiation Physics and Chemistry.

- 3- The use of Polymer-Based Triphenyl Tetrazolium Chloride Films for Ultraviolet Radiation Monitoring.
 - S. Ebrahim, A. A. Abdel-Fattah and Z. I. Ali.

Submitted for publication in Journal of Radiation Research.

Contents

		page		
I Introduction				
I. I	Gamma and Electron Beam Radiation Processing	1		
I.1.1	Radiation Sources for Processing	3		
1.1.2	The Role of Dosimetry in Radiation Processing and Public			
	Health Aspects.	3		
I.1.3	Evaluation of Absorbed Dose	6		
1.1.4	Measurement of Absorbed Dose	7		
1.1.5	Maintaining of Dose Standardization	8		
I.1.6	Dosimeter Response	9		
I.1.7	Build-up and Electronic Equilibrium	10		
I.1.8	Dosimeter Classes and its Applications	11		
1.1.8.1	Primary Standard Dosimeter	11		
1.1.8.2	Reference Standard Dosimeter	11		
1.1.8.3	Routine Dosimeter	11		
1.1.8.4	Transfer Standard Dosimeter	11		
1.1.9	Criteria for Selection of Dosimetry Systems	15		
1.1.10	Traceability of Field Measurement to Reference Standards	16		
1.1.11	International Dose Assurance Service (IDAS)	19		
1.1.12	Evaluation of Routine Dosimeter System	20		
1.2	Ultraviolet Radiation Measurement	21		
I.2.1	Areas of Application of UVR	21		
I.2.2	Radiation Terms and Units	22		
I.2.3	Focus on Depletion of Ozone Layer Affecting the Ultraviolet			
	Radiation	24		
1.2.4	Biological Effects of UVR	26		

I.3	Literature Review on Solid Phase Chemical Dosimeters	27
1.3.1	Dosimetry System for Gamma and Electron Beam Radiation	27
I.3.1.1	Cellulose Triacetate Film (CTA)	28
I.3.1.2	Radiochromic Film	29
1.3.1.3	Polymethylmethacrylate (PMMA Dyed and Undyed Prespex)	32
I.3.1.4	Undyed Plastic Films	33
I.3.1.5	Dyed Plastic Films	34
1.3.1.6	Low Density Polyethylene (LDPE)	35
I.3.1.6. J	Crosslinking of Polyethylene	36
1.3.1.6.2	Degradation of Polyethylene	37
I.3.1.6.3	Oxidation of Polyethylene	37
1.3.1.7	Ultraviolet of and Fourier Transform Infrared Spectroscopy	39
I.3.2	Dosimetry System For Ultraviolet Radiation Measurements	41
	II Experimental	
II .1	Materials	48
II.2	Chemicals and Reagents	48
П.3	Preparation of Film Dosimeters	49
II.4	Apparatus	50
П.5	Radiation Sources	51
II.6	Irradiation Procedure	52
II.7	Absorption Spectra Measurements	53
11.8	Relative Humidity During Irradiation	54
П.9	Temperature During Irradiation Procedure	55
II.10	Post-Irradiation Stability Procedures	56

Contents