
COMPARATIVE STUDY BETWEEN CLONIDINE AND MORPHINE FOR EPIDURAL ANALGESIA AFTER CAESAREAN SECTION

Thesis

Submitted in Partial Fulfilment of the Medical Degree (M.D.) in Anaesthesiology

By

GAMAL ELDIN MOHAMMAD AHMAD ELEWA
M. B., B. ch., MM.Sc. "Anaesthesia"

617.968 G.E

Supervised by

Prof. Dr. ABD EL-AZEEZ MOHAMMAD YOUSEF
Professor of Anaesthesia & Intensive Care
Faculty of Medicine - Ain Shams University

Prof. Dr. MAHMOUD MOHAMED KAMEL
Professor of Anaesthesia & Intensive Care
Faculty of Medicine - Ain Shams University

48534

Prof. Dr. KHALED IBRAHEEM KHAIR ALLAH

Professor of Anaesthesia and Intensive Care Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 1993

ACKNOWLEDGEMENT

I would like to express my sincere appreciation and Abd gratitude to Prof. Dr. El-Azeez Mohammad Yousef. Professor οf Anaesthesia and Intensive Care. Faculty Ain Medicine. Shams University. for his helpful supervision and continuous encouragement.

It gives me a great pleasure to express my deep gratitude Prof. Dr. Mahmoud Mohamed Kamel. of Professor Anaesthesia and Intensive Care. Faculty Medicine. Ain Shams University his valuable for supervision with his creative mind and eminent. guidance, spending quite precious time for the proper achievement of this work.

I should also express my sincerest gratitude Dr. Khalid Ibrahim Khair Allah. Professor Anaesthesia and Intensive Care, Faculty of Medicine, Ain Shams University, his kind advice. for continuous valuable encouragement, supervision, his and great effort throughout this work.

Also, I can not forget to thank Dr. Nadia Calal El-Hefnawy, Lecturer of Histopathology, Faculty of Medicine, Ain Shams University, for her continuous help and support.

Lastly, I would like to thank all members of anaesthesia and Intensive Care Department, Ain Shams University, for their outstanding assistance.

Gamal M. Elewa

CONTENTS

Page
Introduction and aim of the work
Review of literature :
Epidural space in pregnancy
Acute post operative pain
Opicid receptors and epidural morphine
Alpha-2 adrenoceptors and epidural clonidine51
Patients and methods
Results
Discussion
Conclusion
Summary
Abstract
References
Arabic summary

LIST OF TABLES

	rage
1-	Characteristics of ligamentum flavum at different
	vertebral levels5
2-	pKa, molecular weight, ionization and lipid
	solubility of four commonly used opioid drugs and
	one local anaesthetic38
3-	Classification of alpha-2 adrenergic isoceptors $\dots 54$
4-	Location and function of alpha-2 adrenoceptors65
5-	Physiologic responses mediated by alpha-2
	adrenoceptors67
6-	Classification of alpha adrenoceptors:agonists and
	antagonists74
7–	Clinical applications of alpha ₂ adrenergic
	agonists
8-	Demographic characteristics of patients95
9-	Effect of epidural morphine on pain sensation after
	c.s99
10-	- Effect of epidural clonidine on pain sensation
	after c.s100
11-	- Effect of combined epidural morphine and clonidine
	on pain sensation after c. s101
12-	- The difference in pain sensation between the three
	studied groups after c.s

13-	Effect of epidural morphine on heart rate after
	c.s105
14-	Effect of epidural clonidine on heart rate after
	c.s106
15-	Effect of combined epidural morphine and clonidine
	on heart rate after c.s107
16-	The difference in heart rate after c.s. between
	the three studied groups108
17-	Effect of epidural morphine on MABP after c.s111
18-	Effect of epidural clonidine on MABP after c.s112
19-	Effect of combined epidural morphine and clonidine
	on MABP after c.s113
20-	The difference in MABP between the three studied
	groups114
21-	Effect of epidural morphine on respiratory rate
	after c.s119
22-	Effect of epidural clonidine on respiratory rate
ā	after c.s120
23-	Effect of combined epidural morphine and clonidine
	on respiratory rate after c.s121
24-	The difference in respiratory rate between the three
	studied groups122
25-	Effect of epidural morphine on ABG and acid-base
	balance after c.s124
26-	Effect of epidural clonidine on ABG and acid-base
	balance after c.s125

27-	Effect of combined epidural morphine and clonidine on
	ABG and acid-base balance after c.s
28-	The difference in pH between the three studied
	groups127
29-	The difference in PaCO2 between the three studied
	groups127
30-	The difference in PaO2 between the three studied
	groups128
31-	The difference in HCO3 between the three studied
	groups128
32-	The difference in base excess between the three
	studied groups129
33-	The difference in Sa O2 between the three studied
	groups129
34-	Effect of epidural morphine on sedation
35-	Effect of epidural clonidine on sedation133
36-	Effect of combined epidural morphine and clonidine
	on sedation134
37-	The difference in sedation effect between the three
	studied groups
38-	Blood glucose level in the three groups before and
	one hour after epidural injection of the studied
	solution

LIST OF FIGURES

	Page
1-	Lumbosacral epidural space after contrast injection .7
2-	Correlation between lidocaine dose requirements and
	c.s.f. progesterone concentrations in non pregnant,
	pregnant and post partum patients11
3-	T.S. of spinal cord showing Rexed laminae, A β , A β
	and C fibre input to cord, and spinothalamic,
	spinoreticulur and dorsal column output16
4-	Diagram of Rexed laminae, fibre input to and output
	from the spinal cord
5-	Ascending pathways associated with the transmission
	of stimuli appreciated as pain18
6-	The higher projections of the oligosynaptic and
	multisynaptic ascending systems19
7-	Descending inhibitory pathways23
8-	Opioid peptides and their precursors29
9-	The opioid peptide precursors30
10-	-Sites of action of opioids in the spinal cord35
11-	-Intrathecal morphine pharmacokinetics46
12-	-G protein cycling61
13-	-The possible effector mechanisms that are coupled
	to the alpha-2 adrenergic receptor62
14-	-Proposed molecular mechanism for the anaesthetic
	action of alpha-2 adrenergic agonists

15-The difference in pain sensation between the three
studied groups103
16-The difference in heart rate after c. s. between
the three studied groups109
17-The difference in MABP between the three studied
groups115
17-The difference in MABP between the three studied
groups116
18-The difference in respiratory rate between the
three studied groups123
19-The difference in sedation effect between the
three studied groups

Introduction And Aim Of The Work

INTRODUCTION

In recent years, the frequency of caesarean delivery has increased markedly. Although effective pain control is essential for optimal care of such parturients, many continue to experience considerable discomfort (Ready, 1990).

The administration of intramuscular narcotics should no longer be considered routine for postoperative pain management. New alternatives exist which have been repeatedly shown to provide superior analgesia. In addition, decreased morbidity and mortality, improved pulmonary function, earlier ambulation, shorter hospital stays, less medication and greater patient acceptance have all been reported (Rauck, 1990).

Anaesthesiologists are a logical choice to provide pain relief in the immediate postoperative period because they are familiar with pharmacology of analgesia and local anaesthetics, are aware of the short—and long—term effects of drugs given intraoperatively, are knowledgeable about pain pathways and their interruption, and are skilled in techniques available to provide superior pain control (Ready, 1990).

Techniques which have become popular in the past decade include those capable of employing a catheter system. Catheters have been maintained for prolonged postoperative periods (1-7 days) in the epidural space. Which agents exhibit the best qualities for intraspinal (intrathecal and epidural) administration remain unanswered (Rauck, 1990).

Extradural opioid adminstration is now widely accepted for pain relief after caesarean section. The major advantages of this technique include absence of sympathetic block and cardiovascular depression, both of which may occur with local anaethetic spinal block (Cousins and Mather, 1984). Unfortunately, intraspinally administered opioids produce side effects (urinary retention, pruritus, nausea and respiratory depression) and patients may develop tolerance to their analgesic effects (Yaksh and Onofrio, 1987).

In addition to opiate mechanisms, non-opiate spinal cord analgesic receptor systems are currently undergoing clinical investigations. Theoretically, these systems may provide superior analgesia without the side effects or risks of intraspinal opiates. The most extensively studied non-opiate systems have been the alpha-2 agonists

(Rauck, 1990). Clonidine, the prototypical agent in this class, produces dose-dependent analgesia when administered epidurally in patients with postoperative or cancer pain without producing pruritus or respiratory depression. However, sedation, haemodynamic depression and short-lasting analgesia may limit the usefulness of bolus clonidine analgesia in the postoperative period (Eisenach et al., 1989 a and b).

Combinations of drugs are widely used to reduce the therapeutic doses of anaethetic agents as much as possible in an attempt to decrease side effects. So, further studies of combinations of clonidine with opioids are required, as synergistic effects have been postulated to occur with clonidine and morphine (Drasner and Fields, 1988).

AIM OF THE WORK

The aim of this work is to compare the antinociceptive effect of extradurally administered morphine and clonidine (separately and in combination) after caesarean delivery and recording the side effects of each drug.

4

Review Of Titerature

Epidural Space In Pregnancy