AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING PUBLIC WORKS DEPARTMENT

"STUDIES TOWARDS THE RIGOROUS ADJUSTMENT AND ANALYSIS OF THE EGYPTIAN PRIMARY GEODETIC NETWORKS USING PERSONAL COMPUTER"

by

Eng. Mamdouh E. M. Awad

Assistant lecturer at the Department of Public Works Faculty of Engineering Ain Shams University

h3192

E

a thesis

Submitted in partial fulfillment for the requirements of the Degree Of Doctor of Philosophy (Public Works- Surveying)

Supervised by:

Prof. Dr. Mohamed M. Nassar

Professor of Surveying and Geodesy

Public Works Department, Ain Shams University

Dr. Mohamed F. El Maghraby

Assist. Prof. of Surveying and Geodesy Public Works Department, Ain Shams University

Dr. Mohamed E. El Tokhey

Assist. Prof. of Surveying and Geodesy Public Works Department, Ain Shams University

Cairo, 1997

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING PUBLIC WORKS DEPARTMENT

Approval sheet

"STUDIES TOWARDS THE RIGOROUS ADJUSTMENT AND ANALYSIS OF THE EGYPTIAN PRIMARY GEODETIC NETWORKS USING PERSONAL COMPUTER"

by

Eng. Mamdouh E. M. Awad

B.Sc. Civil Engineering Ain Shams University, 1980 M.Sc. Surveying and Geodesy, Ain Shams University, 1988

This thesis for Ph.D. degree had been approved by:

Name	Signature	
Prof. Dr. A. A. Shaker	:. ·····	
Professor of Surveying and Geodesy,	Lule D	Ī
Cobra Faculty of Engineering		
Zigzag University, Cairo, Egypt		
Prof. Dr. O. M. Abou-Beih		
Professor of Surveying and Geodesy, -		
Public Works Department, Faculty of	T CL	
Engineering, Ain Shams University		Λ
Prof. Dr. M. M. Nassar		.//
Professor of Surveying and Geodesy,	•//	les -
Public Works Department, Faculty of	01	
Engineering, Ain Shams University		

	•				

STATEMENT

This thesis is submitted to Ain Shams University for the degree of Ph.D. in Civil Engineering (Public Works - Surveying).

The work included in this thesis was carried out by the author in the Department of Public Works, Ain Shams University, from May, 1993 to November, 1997.

No part of this thesis has been submitted for a degree or qualification to any other University or institution.

Date : / 11/ 1997

Name : Mamdouh E. M. Awad

Signature:

~		
• .		
	-	
	·	
	•	
	•	
	·	
	•	
	·	

Abstract 4 6 1

The economic development of any country requires comprehensive and modern geodetic control networks. The geodetic control networks, in classical geodesy, provide a basis for mapping, cadastral applications and large engineering projects. The recent applications of geodetic control networks require a very high accuracy for the network coordinates. The first order geodetic horizontal control networks of Egypt consists of two main networks; network 1 and network 2. Network 1 has been adjusted by ESA, using a non-rigorous adjustment. However, no final adjustment has been done by ESA for network 2, where its provisional coordinates are only available.

During the past few decades, several previous solutions for the Egyptian horizontal geodetic networks have been performed, either in two or three dimensions. However, these adjustments neglected, totally or partially, the role of the geoid on the adjusted coordinates. Also, no simultaneous adjustment for both networks 1 and 2 on the Egyptian Datum (EGD30) has been performed before. Consequently, it can be seen that, the accuracy of the existing coordinates of the Egyptian geodetic networks, will not be sufficient for precise geodetic applications. Therefore, the rigorous adjustment for the Egyptian horizontal control networks 1 and 2, is essential for recent scientific and precise purposes. In addition, the choice of the geodetic datum will cause corresponding changes in the resulting geodetic coordinates, which are computed relative to it. On the other hand, GPS measurements require existing regional control networks to be adjusted on the GPS datum, which is known as WGS84.

The main goal of this thesis is to perform different simultaneous rigorous adjustment solutions for the Egyptian horizontal geodetic control networks, with the geoid effects on the reduced observations to the reference ellipsoid being taken into account, referring to different geodetic datums, using the currently available personal computers. The first geodetic datum is the Egyptian geodetic datum (EGD30), which is based on Helmert ellipsoid (1906). The second datum is the WGS84, which is the datum of the GPS observations. For this purpose, a software package

was developed by the author, using FORTRAN 77 language, with Microsoft FORTRAN compiler version 5.1. This program was designed to perform the rigorous simultaneous least squares adjustment of large horizontal control networks, using the parametric approach, in terms of the two dimensional geodetic latitude and longitude. The main programming consideration was stipulated, such that the storage requirements for all consecutive different steps of the solution, are kept to a minimum in the memory of the used personal computer. By using the developed version of the software, which runs under Windows, and using any AT-IBM personal computers or their compatibles with extended memory over 8 Meager Ram., the software is capable of adjusting a horizontal network with more than 450 unknown stations.

The obtained results indicated that the non rigorous adjustment in sections, and the neglect of geoid effects in reducing observations to the ellipsoid, as used by ESA, cause undesirable distortions in the network point positions, as well as distortions in both scale and orientations of network sides, that exceed the allowable limits specified for first order geodetic work, and can not be neglected in precise geodetic applications. In addition, including both networks 1 and 2 into the same simultaneous combined adjustments, relative to EGD30 or WGS84, improves the positional accuracy of network 1 stations more than that of network 2 stations, when compared to the cases of adjusting networks 1 and 2 individually by itself. On the other hand, the simultaneous adjustment of network 1 alone, network 2 alone, and both networks 1 and 2 combined together, relative to WGS84 datum, possesses a higher point positional accuracy, than the corresponding adjusted coordinates relative to the Egyptian regional geodetic datum EGD30. This can be attributed to the higher reliability of both the used geoid model and datum initial fixed point in case of WGS84. Consequently, the rigorous simultaneous adjustment of the entire Egyptian networks, with the geoid information being taken into account, is recommended to be performed, relative to WGS84 global datum, with station O1 at Helwan taken as the initial fixed point.

Acknowledgments

In the name of the most merciful GOD, I hereby express my deepest feeling of respect and thanks to great GOD for helping and guiding me throughout my career.

First, my deepest greatest and unlimited gratitude go to my dear supervisor Prof. Dr. Mohamed M. Nassar, professor of surveying and Geodesy, Department of Public Works, Ain Shams University, for his kind supervision and careful guidance, from which I have continuously gained confidence. Also, I would like to express my deepest appreciation for valuable information I have received from him, careful revision of the manuscript of this thesis and his great patience, which is one of the several good things, one can easily discover in his personality. Every body dealt with Prof. Nassar, of course, including me, knows very well that after reviewing any study, the final output differs totally from the first one and come in a good shape.

Unlimited help, encouragement and fruitful suggestions, offered by my dear colleague and supervisor Dr. Mohamed F. El-Maghraby, Assist. Prof. of Surveying and Geodesy, Department of Public Works, Ain Shams University, are highly appreciated.

I wish to express my deepest gratitude to my deer colleague and supervisor, Dr. Mohamed El-Tokhey, Assist. Prof. of Surveying and Geodesy, Department of Public Works, Ain Shams University, for his continuous help, valuable time and sacrifice. Unlimited and deepest thanks are going to him for his continuous encouragement and for his very nice friendship before and during carrying out the work of this thesis

Also, all me greatest and deepest thanks are going to all the staff members of the Surveying Group of Public Works Department, with special emphasis to Dr. E brah im F. Shaker and Dr. Mohamed S. Hanfy, for their cooperation and good friendship as my colleagues at the same Department. Special thanks go to Dr. Mounir T. Selim, for his careful providing of the manuscript of this thesis, and for his kind assistance to me all the times.

Special thanks to the staff of the Survey of Egypt Authority are gratefully acknowledged for providing me some of the used data.

Table of contents

Abstract	Т	7
Acknowledgment:	s V	I
Table of contents	VI	П
List of figures	X	П
List of Tables	XI	V
l. Introduction		.1
1.1 The conce	pt of horizontal control networks	.1
1.2 Technique	s for establishing horizontal control networks	2
1.2.1 Cla	ssical techniques	.2
1.2.2 Mo	dern techniques	.7
1.3 Historical	background of the Egyptian geodetic	
control net	tworks	. 8
1.4 Previous a	djustments of the Egyptian geodetic	
horizontal	control networks	.10
1.5 Motivation	ns behind the present investigation	.14
1.6 Objective	of the thesis	. 15
1.7 Scope of p	presentation	.17
2 Mathematical	Models for Adjusting Horizontal	
Control Netw	orks	21
2.1 Reduction	of observations to the reference ellipsoid	.21
2.1.1 Rec	duction of base lines.	. 22
2.1.2 Red	luction of horizontal directions	. 25
2.1.3 Rec	fuction of horizontal angles	27
2.1.4 Red	duction of astronomic azimuths	. 27
2.2 Adopted n	nethod of solving the direct and inverse	
geodetic	problems on the ellipsoid	. 28
2.2.1 The	e iterative solution for the inverse geodetic problem	. 31
2.2.2 The	e iterative solution for the direct geodetic problem	. 36
2.2.3 Cor	mputational accuracy verification	. 38
2.3 Formation	of linearzied observation equations on the ellipsoid.	. 40
2.3.1 Bas	se line observation equation	.41
2.3.2 Geo	odetic azimuth observation equation	43
2.3.3 Ho	rizontal direction observation equation	44

2.3.4	Horizontal angle observation equation	47
2.4 Revie	ew of parametric least squares adjustment for	
solvii	ng 2-D horizontal control networks	48
2.5 Post a	nalysis of the adjusted horizontal geodetic control	
netwo	rks	57
2.5.1	Chi-Square Goodness of Fit test	58
2.5.2	Examination of individual residuals	59
2.5.3	Chi-square test of estimated variance factor	62
2.5.4	Examination of estimated variance covariance	
	matrix of adjusted coordinates (error ellipses)	63
2.5.5	Single number of precision of the entire network	70
2.5.6	Comparison of different sets of adjusted coordinates	71
3 The Egyp	ntian First Order Geodetic Horizontal Control	
Netwo	orks	75
3.1 Descri	iption of network 1	75
3.2 Descri	ption of network 2	84
3.3 The ol	bservation techniques	88
3.3.1	Base line observations	92
3.3.2	Horizontal angle observations	92
3.3.3	Vertical angles observations	94
3.3.4	Astronomical latitudes observations	95
3.3.5	Astronomical longitudes observations	96
3.3.6	Astronomical azimuths observations	97
4 Develope	d Software for Adjusting Large Horizontal	
	Networks Using Personal Computers	
4.1 Progra	amming considerations	101
4.2 Softw	are description	103
4.2.1	Input data and its storage requirements	104
4.2.2	Formation of the linearized observation	
	equations and their storage requirements	108
4.2.3		
	its storage requirements	111
4.2.4	Solution of the normal equations and its	
	storage requirements	115

	4.2.5	Output results and their storage requirements 117
	4.2.6	Program flow-chart
	4.3 Softv	vare capacity limitations
	4.4 CPU	time for different jobs with different PC's
5	Adjustin	ng the Egyptian Horizontal Geodetic
	Control	Networks on the Egyptian Datum (EGD30)129
	5.1 Defin	ition of the used Egyptian geodetic datum130
	5.2 The u	ised geoid model for reduction of observations
	5.3 Data	reduction to Helmert ellipsoid
	5.4 Weig	hting of the used observations
	5.5 Resul	its and analysis of the different solutions for Network 1 139
	5.5.1	Results and analysis of the first solution Net1-E0141
	5.5.2	Results and analysis of the second solution Net1-E1 142
	5.5.3	Results and analysis of the third solution Net1-E2147
	5.5.4	Studying the effect of approximate adjustment in
		sections on the network coordinates
	5.5.5	Studying the effect of neglecting the geoid, during
		the process of observation reduction, on the network
		coordinates
	5,5.6	Resultant effect of neglecting the geoid and applying
		non rigorous adjustment on the network coordinates 163
	5.6 Resul	ts and analysis of the different solutions for Network 2 169
	5.6.1	Results and analysis of the first solution Net2-E0170
	5.6.2	Results and analysis of the second solution Net2-E1 172
	5.6.3	Results and analysis of the solution Net2-E2174
	5.6.4	Studying the reliability of ESA provisional
		coordinates for network2
	5.7 Resul	Its and analysis of the different solutions for Networks 1
	and	2 combined together
	5.7.1	Results and analysis of the first solution Nets-E0 185
	5.7.2	Results and analysis of the second Solution Nets-E1 185
	5.7.3	Results and analysis of the third solution Nets-E2 186
	5.7.4	Studying the effect of combining networks 1 and 2
		together on the coordinates of network 1

	5.7.5	Studying the effect of combining networks 1 and 2	
		together on the coordinates of network 2	198
5.	8 Result	s and analysis of some modified solutions	
	associ	ated with Network 2	. 206
	5.8.1	Results and analysis of the first modified	
		solution Net2-E3	.207
	5,8.2	Results and analysis of the second modified	
		solution Nets-E3	. 209
	5.8.3	Studying the effect of the modified solution	
		Nets-E3 on both Network 1 and 2 coordinates	211
5.	9 Closin	g remarks	. 212
		the Egyptian Horizontal Geodetic Control	
N	etworks	on the World Geodetic System of 1984 (WGS84)	.213
6.	l Defini	tion of the used geodetic datum of WGS84	. 214
6.2	2 The us	sed geoid model for reduction of observations	. 215
6.3	B Data r	eduction to the ellipsoid of the WGS84	.216
6.4	4 Result	s and analysis of the first solution Net1-w2 of network 1	218
6.5	Result	s and analysis of the second solution	
	Net2-	w2 of network 2	.221
6.6	6 Result	s and Analysis of the third solution Nets-W2 for	
	Netwo	orks I and 2 combined together	. 224
6.	7 Closin	g remarks	. 228
7 Su	mmary	, Conclusions and Recommendations	231
7.	l Summ	ary	.234
7.2	2 Conclu	usions	.238
7.3	Recon	nmendations	. 242
Refe	rences		247