ESTIMATION OF FORMATION CHARACTERISTICS FROM NUCLEAR AND OTHER WELL-LOGS

VV.

BY

EL SAYED AHMED TAHA AMIN

(B. SC. IN GEOLOGY)

THESIS

SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN GEOLOGY

206.46

DEPARTMENT OF GEOLOGY
FACULTY OF SCIENCE
AIN SHAMS UNIVERSITY
CAIRO

1985

NOTE

The present thesis is submitted to the Faculty of Science, Ain Shams University in partial fulfillment for the requirements of Master of Science in Geology.

Besides the research work materialized in this thesis, the student attended nine post graduate courses for one academic year in the following topics:

- 1. Sampling.
- 2. Surveying.
- 3. Photogeology.
- 4. Applied topics (Petrophysics).
- 5. Geophysical methods and techniques.
- 6. Geophysical prospecting.
- 7. Lithostratigraphy.
- 8. Geotectonics.
- 9. Structural Geology.

He has successfuly passed the final examination of these courses, beside an advanced coarse in computer (fortran Language).

Prof. Dr. M.E. Bassioni

M. A. Bassini

Head of Geology Department Faculty of Science Ain Shams University.

LIST OF CONTENTS

Chapt	er Subject.	Page
ı.	INTRODUCTION	1
	I.l. Generalities.	1
	I.2. Aim of Study.	3
	I.3. Materials Used in Study.	3
	I.4. Geologic setting.	4
	I.5. Pre-cenomanian Clastic unit.	5
II.	WIRELINE SERVICES.	8
	II.1. Introduction.	8
	II.2. Logging-Environmental Conditions.	9
	II.2.1. Radioactive Log.	9
	II.2.la. Gamma Ray log.	26
	II.2.lb. Neutron Log.	26
	II.2.lc. Formation Density Log.	27
	II.2.2. Acoustic Log.	27
	II.2.2a. Sonic log.	27
	II.2.3. Electrical Log.	28
	II.2.3a. Resistivity Log.	29
	II.2.3b. Spontaneous Potential Log.	30
	II.2.3c. High Resolution Dipmeter Tool.	31
	II.2.4. Caliper Log.	31
III.	GRAPHICAL LOGGING INTERPRETATION.	33
	III.1. Introduction.	33
	III.2. Resistivity-Porosity Plots (Mono-Porosity Plots).	35
	III.2.1. Principles.	35
	TTT 2 2 marks	25

		III.2.3. Applications.	38
		III.2.4. Results.	40
	III.3.	Porosity - Porosity Plots (Dia-Porosity Plots).	86
		III.3.1. Principles.	86
		III.3.2. Types.	90
		III.3.3. Applications.	92
		III.3.4. Logging Anomalies.	95
		III.3.5. Results.	99
IV.	ANAL	YTICAL LOGGING INTERPRETATION.	120
	IV.1.	Introduction.	120
	IV.2.	Manual Logging Interpretation.	122
		IV.2.1. Pre-Interpretation phase.	122
		IV.2.2. Interpretation phase.	133
	IV.3.	Computerized processed Interpretation (CPI).	151
	IV.4.	Presentation of out-put Data.	154
		IV.4.1. Isoparametric Maps.	155
		IV.4.2. Litho-saturation Cross Plots.	161
v.	SUBS	URFACE EVALUATION.	198
	v.1.	Introduction.	198
	V.2.	Structural Inferences.	198
	V.3.	Thickness variations.	201
	V.4.	Lithofacies Analysis.	204
	V.5.	Sieve Analysis.	211
		V.5.1. Method of Study.	211
		V.5.la. Treatment of Samples.	211
		V.5.lb. Grain size Parameters and Environment	
		Determination.	213

	V.5.lc. Cross plots and Maps.	214
	V.5.2. Discussion and Results.	215
	V.5.2a. Cross Plots.	215
	V.5.2b. Microscopic Examination of samples.	232
	V.5.2c. Aerial Distribution of Nubia "A" Sandstone	
	Parameters.	235
	V.5.2d. Depositional Environment Indicated by	
	Sahu Equations.	236
VI.	SUMMARY AND CONCLUSIONS.	238
	REFERENCES.	244
	ARABIC SUMMARY	

LIST OF FIGURES

No	•				Subject	Page
1.	Io	cation r	map of t	he st	udy area	
2.	Ges	neralize	ed start	igrap	hic column of the study area	6
3.	Mo	no-paros	sity cro	ss pl	ots (Rt- fb, Rt-DT) of J-1.	41
4.	11	n	п	Ħ	(Rt-9b, Rt-DT & RI- $\phi_{ m N}$) of J-6	43
5.	77	Ħ	n	#1	(R _{XO} -9b, R _{XO} -DT & R _{XO} -Ø _N) of J-6.	44
6.	n	Ħ	Ħ	π	(Rt - P b,Rt -DT & Rt- \emptyset_N) of J-21.	
7.	н	n	rr	***	(R _{XO} -Pb,R _{XO} -DT & R _{XO} -Ø _N)of J-21.	47
8.	n	Ħ	Ħ	11	(Rt- f b,Rt-Dt & Rt- ϕ_N) of J -25.	48
9.	11	n	77	11	$(R_{XO}^{-p}b, R_{XO}^{-DT} & R_{XO}^{-p})$ of J-25.	50
10.	n	l (11	*1	(Rt- β b,Rt-DT & Rt- ϕ _N) of J-29.	51
ш.	**	11	Ħ	Ħ	(R - Pb, R -DT & R -Ø _N) of J-29.	54
12.	11	n	27	11	(Rt- DT) of J-32A.	55
13.	**	n	II	n	$(Rt - \phi_N)$ of R-1.	58
14.	Ħ	••	n	TY	21	61
15.	п	27	п	97	(Rt-9b,Rt-DT & Rt-ØN) of R-5A	63
16.	Ħ	н	n	11	$(R_{XO} - 9b, R_{XO} - DT & R_{XO} - \emptyset_N)$ of R-5A.	64
17.	19	PI	11	n	(Rt - 9b, Rt-DT & Rt-Ø _N) of R-6.	67
18.	11	n	Ħ	n	(Rt-fb,Rt-DT & Rt - ϕ_N) of R-7.	69
19.	n	71	rı	п	$(R_{XO} - fb, R_{XO} - DT & R_{XO} - \emptyset_N)$ of R-7.	70
20.	71	n	11		(Rt- Pb , Rt-DT & Rt- O_N) of R-10A.	73
21.	17	n	n		$(R_{XO} - fb, R_{XO} - DT & R_{XO} - \phi_N)$ of R-10A.	74
	37	11			(Rt - DT & R - DT) of R-11.	76
22.			"	*1	(Rt- DT & Rt - ϕ_{N}) of R-12.	78
23.	n		'n	11	$(R_{XO}^{-DT} \& R_{XO}^{-} \emptyset_{N})$ of R-12.	79
24.	**	11	TI	it	(Rt - f b,Rt-DT & Rt - g N) of R-13A.	82
25.	H	tı	п	**	(Rt- P b,Rt-DT & Rt- \emptyset _N) of R-21.	84

20.	ratio-potosity cross proces (Rt-7 b, Rt-br & Rt-42) or b-2.	87
27.	" " $(R_{XO} - Pb, R_{XO} - DT \& R_{XO} - \emptyset_N)$ of D-2.	88
28.	Lateral and lumped averaging of $V_{\rm sh}$ and $\phi_{\rm eff}$.	96
29.	Dia porosity crossplot (?b - DT) of J-1.	101
30.	" " (?b-DT,?b- ϕ_{N} & DT- ϕ_{N}) of J-6.	102
31.	" " (?b-DT,?b- ϕ_N & DT- ϕ_N) of J-21.	104
32.	" " (?b-DT,?b- ϕ_{N} & DT- ϕ_{N}) of J-25.	105
33.	" " (?b-DT,?b- $\phi_{ m N}$ & DT- $\phi_{ m N}$) of J-29	106
34.	" (?b-DT, ?b- ϕ_N & DT- ϕ_N) of R-5A.	108
35.	" (ρ b-DT, ρ b- ϕ _N & DT- ϕ _N) of R-6.	110
36.	" " ($^{\rho}b$ -DT, $^{\rho}b$ - $^{\phi}N$ & DT- $^{\phi}N$) of R-7.	111
37.	" " ($^{\circ}$ b-DT, $^{\circ}$ b- $^{\circ}$ N & DT- $^{\circ}$ N) of R-10A.	113
38.	" (DT- $\phi_{ m N}$) of R-12.	114
39.	" (Pb-DT, Pb- $\phi_{ m N}$ & DT- $\phi_{ m N}$) of R-13A.	116
40.	" " (?b-DT,?b-Ø _N & DT-Ø _N) of R-21.	117
41.	" " ($^{\circ}$ b-DT, $^{\circ}$ b- $^{\phi}$ N & DT- $^{\phi}$ N) of D-2.	119
42.	Fluid transit time versus mud filtrate salinity.	129
43.	Fluid density versus fluid transit time of R-13A and R-21.	129
44.	Comparison of matrix density histograms of J-29 and J-25.	131
45.	Matrix density versus resudal oil crossplot of July field.	139
46.	Effective porosity gradient map, Nubia "A", July field.	156
47.	" " " ,Ramadan field.	157
48.	Water saturation map, Nubia "A", July field.	158
49.	" " " , Ramadan, field.	159
50.	Movable hydrocarbon saturation map, Nubia "A", July field.	160
51.	" " ", Ramadan field,	162
52.	Oil in place map, Nubia "A", July field.	163
53.	" " Ramadan field	164

54.	Compute	r processed	Interpretation	on, J-1.	165
55.	77	77	n	, J - 6.	166
56.	n	н .	. #	, J-21.	167
57.	п	in	n	, J-25.	168
58.	n	Ħ	n	, J-29.	169
59.	н	, "I	п	, R-1	170
60.	n	n	п	, R-5A.	171
61.	п	п	n	, R-6.	172
62.	Ħ	Ħ	n	, R-7.	173
63.	Ħ	Ħ	n	, R-10A.	174
64.	Ħ	n	п	, R-11.	175
65.	17	Ħ	11	, R - 12.	176
66.	n	11	**	, R-13A.	177
67.	Ħ	Ħ	н	, R-21.	178
68.	11	n	PI	, D-2.	179
69.	Structu	re contour	map, Nubia "A	",July field.	199
70.	n	II .	" , Nubia "A	", Ramadan field.	200
71.	Isopach	map of Nub	oia "A" in Jul	y field.	202
72.	**	n n	in Ram	adan field.	203
73.	Sand is	olith map c	of Nubia "A" i	n July field.	205
74.	11	** **	n 44 į	n Ramadan field.	206
75.	Lithofac	cies (perce	ntage) map of	Nubia "A" in July field.	207
76.	n	e e	п	in Ramadan field.	208
77.	Shale po	ercentage m	ap of Nubia "A	A" in July field.	209
78.	п	и п	11	in Ramadan field.	210
79.	Mean gra	nin size ma	p of Nubia "A'	" in July field.	216
80.	11 1	т п	21 79	in Ramadan field.	217

81.	Sorting coefficient map of Nul	bia "A" in July field.	218
82.	n u n	in Ramadan field.	219
83.	Mean grain size versus coeffic	cient of sorting of Nubia "A"in	
	July field.		221
84.	Mean grain size versus coeffic	cient of sorting of Nubia "A"	
	in Ramadan field.		222
85.	Mean grain size versus porosit	y of Nubia "A" in July field.	224
86.	n 11 n n	" in Ramadan	
	field.		225
87.	Coefficient of sorting versus	porosity of Nubia "A" in July	
	field.		226
88.	Coefficient of sorting versus	porosity of Nubia "A" in	
	Ramadan field.		227
89.	Mean grain size versus skewness	of Nubia"A" in July field.	229
90.	n n n n	" in Ramadan field.	230
91.	Coefficient of sorting versus	kurtosis of Nubia "A" in July	
	field.		231
92.	Coefficient of sorting versus	kurtosis of Nubia "A" in	
	Ramadan field.		233

- viii -

LIST OF TABLES

No.	Subject	Page
1.	Available logging data of the studied wells of	
	July field.	10
2.	Available logging data of the studied wells of	
	Ramadan field.	10
3.	Different effects on log readings.	39
4.	Data sheet of J.1.	42
5.	Data sheet of J-6.	46
6.	Data sheet of J-21.	49
7.	Data sheet of J-25.	52
8.	Data sheet of J-29	56
9.	Data sheet of J-30A.	57
10.	Data sheet of J-32A.	60
11.	Data sheet of R-1.	62
12.	Data sheet of R-5A.	66
13.	Data sheet of R-6.	68
14.	Data sheet of R-7.	71
15.	Data sheet of R-10A.	75
16.	Data sheet of R-11.	77
17.	Data sheet of R-12.	81
18.	Data sheet of R-13A.	83
19.	Data sheet of R-21.	85
20.	Data sheet of D-2.	89
21.	Results derived from Schlumberger charts, cross	
	plots and computer processed interpretation of J-1.	181
22.	Results derived from Schlumberger charts, cross	
	plots and computer processed interpretation of J-6.	182

23.	Results derived from Schlumberger charts, cross	
	plots and computer processed interpretation of J-21.	183
24.	Results derived from Schlumberger charts, cross	
	plots and computer processed interpretation of J-25.	184
25.	Results derived from Schlumberger charts, cross	
	plots and computer processed interpretation of J-29.	185
26.	Results derived from Schlumberger charts, cross	
	plots and computer processed interpreation of J-30A.	186
27.	Results derived from Schlumberger charts, cross	
	plots and computer processed interpretation of J-32A.	187
28.	Results derived from Schlumberger charts, cross	
	plots and computer processed interpretation of R-1.	188
29.	Results derived from Schlumberger charts, cross	
	plots and computer processed interpretation of R-5A.	189
30.	Results derived from Schlumberger charts, cross	
	plots and computer processed interpretation of R-6.	190
31.	Results derived from Schlumberger charts, cross	
	plots and computer processed interpretation of R-7.	191
32.	Results derived from Schlumberger charts, cross	
	plots and computer processed interpretation of R-10A	192
33.	Results derived from Schlumberger charts, cross	
	plots and computer processed interpretation of R-11.	193
34.	Results derived from Schlumberger charts, cross	
	plots and computer processed interpreation of R-12.	194
35.	Results derived from Schlumberger charts, cross	
	plots and computer processed interpretation of R-13A.	195
36.	Results derived from Schlumberger charts, cross	
	plots and computer processed interpretation of R-21.	196

37. Results derived from Schlumberger charts, cross plots and computer processed interpretation of D-2. 197

LIST OF PLATES

No.			St	bject	Page
1.	Digitized	log	play-back	J-1.	11
2.	Digitized	log	play-back	J-6.	12
3.	Digitized	log	play-back	J-21.	13
4.	Digitized	log	play-back	J-25.	14
5.	Digitized	log	play-back	J-29	15
6.	Digitized	log	play-back	R-1.	16
7.	Digitized	log	play-back	R-5A.	17
8.	Digitized	log	play-back	R-6.	18
9.	Digitized	log	play-back	R-7.	19
10.	Digitized	log	play-back	R-10A.	20
11.	Digitized	log	play-back	R-11.	21
12.	Digitized	log	play-back	R-12.	22
13.	Digitized	log	play-back	R-13A.	23
14.	Digitized	log	play-back	R-21.	24
15	Digitized	Toa	play -back	D-2.	25

ACKNOWLEDGEMENTS

The auther wishes to thank Professor Dr. M.E.BASSIONI, head of Geology Department, Faculty of Science, Ain Shams University, for offering the facilities of department during the finishment of this work.

The auther is indebted to Professor Dr. M.EZZ EL-DIN HELMI, Professor of Geology and Vice Dean of the Faculty of Science, Ain Shams University, for supervising this work, and his constant guidance and support during the progress of this work covered by the present thesis.

The auther is grateful to Dr. YAHIA ABDEL HADI, Ass. Professor of Geology, Faculty of Science, Cairo University and Dr. HASSAN AL KADY, Ass. Professor of Geology, Faculty of Science, Al Azhar University, for their joined supervision, their effort and help during the practical work.

The auther is also grateful to the Gulf of Suez Petroleum Company and AMOCO Production Oil Company for logs, samples and data provided, permission of using their computer facilities and doing this work. Special gratitude is also extended to all colleagues in GUPCO for their advice and help.

Special thanks to DR. A.S. ABU EL-ATA Lecturer of Geophysics Faculty of Science, Ain Shams University and Dr.M.DARWISH Lecturer of Geology, Faculty of Science, Cairo University for their contineuous help, constructive effort and their advices.