
STUDIES ON THE HISTOLOGY, HISTOCHEMISTRY, AND KINETICS OF SPLEEN TISSUES OF RAT TREATED WITH GAMMA IRRADIATION

ATHESIS SUBMITTED

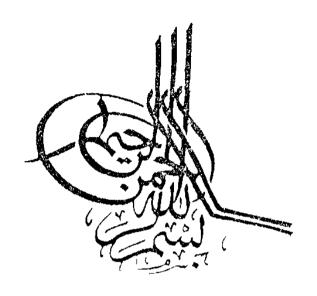
BY

Nabila Abdel Rahman Abdel Motgal

Assistant Lecturer in the Department of Radiation Biology,

National Centre for Radiation Research and Technology, Cairo, Egypt.

TO


The Faculty of Science,

Ain Shams University

For The Award of the Ph.D Degra

"Zoolozy "

1993

قال الله تعالى:

ويد علون عن الرق قل الرق من أمركى و وما أوتبتم من العلم إلا قلي لل و من العلم الما قلي الله المنظم من العلم الما قلي الله المنظم من العلم المنظم من العلم المنظم المنظ

DEDICATION

 Φ_0

By Father's Spirit

and all my family

CONTENTS

	Page
ACKNOWLEDGEMENTS	5
INTRODUCTION	7
AIM OF THE PRESENT WORK	9
REVIEW OF LITERATURE	11
-The cell cycle.	11
-Mitotic Index.	13
-Division Delay.	15
-Cell Population kinetics.	17
-Effects of irradiation on the spleen	
histology and lymphocytes.	20
→Connective Tissue Matrix.	24
Histochemistry of certain Essential parameters	s:
-Total proteins.	25
-Nucleic Acids.	27
a- DNA (Deoxyribonucleic Acid)	
b-RNA (Ribonucleic Acid)	
MATERIAL AND METHODS	29
RESULTS AND OBSERVATIONS	
-Body weight	37
-Relative spleen weights	40
Biochemical findings:	
Total lymphocytes count/spleen White	
pulp section.	
Colchicine treated material:	43
Irradiated specimens injected with colchid	cine
a- Exposure at the dose level of 0.8 G	Y. 47

b- Exposure at the dose level of 6 GY.	63
Histological and Histopathological findings:	
- Spleen histology.	85
- Colchicine Treated Specimens.	93
- Irradiated specimens, injected with	
colchicine.	
a- Exposure at the dose level of 0.8 GY	
b- Exposure at the dose level of 6 GY.	104
Connective Tissue Matrix.	
- Normal features.	116
 Colchicine treated material. 	116
- Irradiated specimens, injected with	
colchicine.	
a- Exposure at the dose level of 0.8 GY	124
b-Exposure at the dose level of 6 GY	124
Histochemical findings:	
- Total proteins.	133
- Normal picture.	133
 Colchicine treated specimens. 	
- Irradiated specimens, injected with colchic	ine.
a- Exposure at the dose level of 0.8 GY	136
b- Exposure at the dose level of 6 GY.	142
Deoxyribonucleic Acid (DNA) containing	
particles.	
- Normal condition.	148
 Colchicine treated specimens. 	
 Irradiated specimens, injected with 	
colchicine.	148
a- Exposure at the dose level of 0.8 GY	148

b- Exposure at the dose level of 6 GY.	156
Ribonucleic Acid (RNA)	
- Normal picture.	162
- Colchicine treated specimens.	162
- Irradiated specimens, injected with colchici	ne.
a- Exposure at the dose level of 0.8 GY	162
b- Exposure at the dose level of 6 GY.	168
•	
Cell Kinetics:	
- Effects of colchicine on the mitotic	
processes.	179
- Kinetics of cellular proliferation.	183
<u>-</u>	
- DNA total scores in spleen white pulp.	
a- Before-irradiation.	187
b- Post-irradiation and injection with	
colchicine	204
DISCUSSION.	205
SUMMARY AND CONCLUSIONS	235
BIBLIOGRAPHY	252
ARABIC SUMMARY.	

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to Professor Dr. Mahmoud A. El-Banhawy, Professor of Expermental Zoology (Cell Bilogy and Histochemistry) and Ex-Head of the Department of Zoology, Faculty of Science, Ain Shams University, for his continuous guidance invaluable suggestions and the critical reading of the manuscript.

The author is greatly indebted to Professor Dr. Hamid M. Roushdy El Kady, Professor of Radiation Biology and Ex-Chairman of Atomic Energy Authority, for suggesting, planning and supervising the whole work and for reading and criticising the manuscript.

I also wish to express my appreciation to **Dr. Safaa M. Nasr**, Assistant Professor of Cytopathology and Immunology, National Centre for Radiation Research and Technology (NCRRT). For her valuable assistance in the supervision of the work.

I am sincerely grateful to *Dr. Nayera Anwar*, Assistant Professor of Clinical Pathology, National Cancer Institute (NCI) for her deep interst, help and encouragment in the present work.

Thanks are also extended to all my colleagues at the radiation Biology Department and the Gamma Irradiation Processing Division of the "NCRRT" for providing all necessary facilities for the accomplishement of this work.

Last and not least. I would like to acknowledge the help and encouragement of the members of the Zoology Dept., as well as the administeration of the Faculty of Science, Ain Shams University.

INTRODUCTION

INTRODUCTION

Cell population kinetics is mainly concerned with the study of the dividing cells taking into consideration both normal and abnormal circumstances. Examples of the normal conditions are represented by the cell populations which proliferate with higher frequency such as the gastro-intestinal epithelium, haemopoietic tissues, gonads, urinary bladder linings, etc., relative to other ones. (Duncan and Wias;1977).

According to Awad (1990), the study of the kinetics of cell proliferation. In with the tumor comparison corresponding normal prototypes, warrantrs special attention aiming to better understanding of the clinical sequences of malignant diseases, in general, and in human beings- in particular.

In this respect, the spleen provides a good model for such investigations. This organ is known to play a principal role in haemopoises, especially in the removal of fatigued erythrocytes, phagocytosis, blood storage and blood production in fetal life, though the last activity becomes confined to the formation of lymphocytes only after birth. (Firkin et al., 1989). However, this process is mainly carried out in the white pulp (nodules) of the spleen.

The same above authors also elucidated that the spiech is an essential source of the manufacture of antibodies. Under antigenic stimulation, its contents of B-lymphocytes give rise to antibodies producing plasma cells and lymphoblasts.

In a rather similar direction, Abdel Rahman (1985), revealed that exposure of albino rats to gamma irradiation at the dose level of 8 Gy-had induced a fast and pronounced decline of the lymphocytic constituents in the bone marrow and spicen of rats after the 3rd day subsequent to irradiation.

The **S**ensitivity of an organ to gamma irradiation was previously elucidated by Schvenzel et al., (1975), to be generally proportional to its rate of cell renewal.

In such cases, the mitotic index could be adequately applied as a measure to demonstrate and determine the level of cellular activity, regarding the radiation damage induced in one particular cell population.

AIM OF THE PRESENT WORK

AIM OF THE PRESENT WORK

In view of the foregoing introductory statements, the present investigation was directed to demonstrate and evhate the kinetics of cellular populations in the spleen of rats under different conditions including normal, colchicine-injected, and gamma irradiated-colchicine injected ones.

This comprised the following objectives:

- (I) Identification of the Proliferation fraction of lymphocytes and the ratio of large lymphocytes relative to the small lymphocytes (L/S ratio) in the spleen white pulp, using light microscopy.
- (II) Assessment of the histolgical features of the splenic tissues in both the normal and experimental animals.
- (III) Histochemical illustration of certain essential parameters, (i-e total proteins, connective tissue matrix, DNA, and RNA also in those different instances.
- (IV) Estimation of the **Mitotic Index (MI%)**, involving examination of the spleen white pulp sections obtained from the different animal groups with the oil immersion lens to

record the percentage of the dividing cells at the metaphase stage.

- (V) Statastical analysis of cell proliferation and measurments of the potential doubling time, or the mean rate of cell production (Tp), and mitotic rate (MR) in the white pulp of the rat spleen.
- (VI) Evaluation of **DNA** content-by score as an indirect measure of its synthesis using t-test.