AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

WASTEWATER TREATMENT FOR SMALL COMMUNITIES

BY

NISREEN IBRAHIM MOHAMMED

B.Sc. Civil Engineering

A Thesis

Submitted in Partial Fulfillment of the Requirements of the Degree of M.Sc. in Civil Engineering

Supervised by

Prof. Dr. HAMDY IBRAHIM ALY

Professor of Sanitary Engineering

Faculty of Engineering,

Ain Shams University

Cairo 1992

628-119 N.9

Examiners committee

Name , Title & Affiliation

Prof. Dr. Ibrahim H. El Hatab
 Frofessor of Sanitary Engineering
 Cairo University -Eng. Faculty

SIGNATURE 1 - (1 - H : H :

2. Prof. Dr. Addly S. Atrees Professor of Sanitary Engineering Al-Azhar University -Eng. Faculty Adly Payed Almi,

3. Prof. Dr. Hamdy I. Aly Professor of Sanitary Engineering Ain Shams University - Eng. Faculty Hamdy I Ali

DATE : / /

STATEMENT

This dissertation is submitted to Ain Shams University for the degree of M. SC. In Civil Engineering .

The work included in this thesis was carried out by the author in the department of Public Works. Faculty of Engineering, Ain Shams University, from November 1987 to March 1992.

No part of this thesis has been submitted for a degree or a qualification at any other University or Institution.

Date : 22/4/1992
Signature : Nisreen Sbrahim

Name : Nisreen Ibrahim

Mohammed

ACKNOWLEDGMENT

I am deeply grateful to Dr. Hamdy I. Aly Professor of Sanitary Engineering, Faculty of Engineering, Ain Shams University, for Suggesting the problem and for his great help and encouragement during the preparation of this thesis.

Also I wish to express my sincere thanks to Eng. Mohammed Shaaban, Lecturer Assistant of Sanitary Engineering, Faculty of Engineering, Ain Shams University, for his patient guidance and assisting during the preparation of this thesis.

Also, my sincere acknowledgement is due to Eng. Marawan Karawya to his generous help and assisting.

I wish to acknowledge my gratitude and sincere thanks to my husband, Eng. Amr Sherif for his encouragement and assisting in the final preparation of the thesis.

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

DEPT. OF PUBLIC WORKS

Abstract of the M.Sc. Thesis

Submitted by : Nisreen Ibrahim Mohammed

Title of Thesis : Wastewater treatment for small

Communities

: Prof. Dr. Hamdy Ibrahim Ali Supervisors

Supervisors
Registration Date : 13/10/1986

Examination Date

ABSTRACT:

Several pollutional problems are associated with excreta and sewage disposal in Egyptian rural areas and small communities where public sewerage systems are not provided. Sewerage systems comprise : gravity sewer network, pump stations, rising mains and treatment works. When regularity criteria for wastewater disposal are to be met, several treatment techniques can be when applied produce wastewater of satisfactory quality .

ditches, Oxidation aerated Lagoons, and natural stabilization ponds are among different sewage treatment which are more suitable for small communities.

The purpose of this study was to carry out cost analysis of the three systems when properly designed and adopted to small communities of different sizes. Analysis was aided by the use of high speed computer.

The Outcome of this study indicated that oxidation ditches when costruction costs are considered are the cheapest among the other systems. Also, the study revealed that the availability of land as well as its cheap cost are important factors governing the choice of the treatment system.

Natural stabilization ponds working in series are on the other hand produces highly stabilized effluent which is safe for agricultural purposes .

CONTENTS

	page
STATEMENT	i
ACKNOWLEDGEMENT	ii
ABSTRACTS	iii
CONTENTS	iv
LIST OF FIGURES	ix
LIST OF TABLES	ΧV
SYMBOLS AND ABBREVIATIONS	хx
CHAPTER I : INTRODUCTION	
1.1 Unsewered rural areas and needs.	i
1.2 Importance of sewage disposal and methods used	2
in rural areas and small communities.	
1.3 waste stabilization ponds	4
1.3.1 Types of ponds.	5
1.3.2 combination of various types of ponds .	12
1.3.3 Factors affecting stabilization pond	<u> </u>
performance.	
1.4 Extended aeration process	21
1.4.1 Aerated lagoon .	23
1.4.2 Oxidation ditches.	25
1.4.3 Factors affecting extended aeration process	29
performance.	

1.5 Comparison between waste stabilization ponds and	39
activated sludge systems.	
1.5 Scope of work.	
CHAPTER II :LITERATURE REVIEW	44
CHAPTER III :DESIGN BASIS AND DESIGN CRITERIA OF	
ALTERNATIVE TREATMENT SYSTEMS	
3.1 Treatment concept alternatives.	88
3.2 Egyptian villages populations.	88
3.3 Effluent standards.	91
3.4 Design basis .	94
3.5 Design calculations.	94
3.6 Design criteria	95
3.6.1 Anaerobic pond.	95
3.6.2 Facultative pond.	96
3.6.3 Maturation pond.	96
3.6.4 Aerated lagoon.	97
3.6.5 Oxidation ditch.	78
3.6.6 Final clarifier.	100
3.6.7 Gravity thickener.	100
3.6.8 Drving beds.	101

3.7 Design procedure					
3.7.1 Anaerobic ponds.					
3.7.2 Facultative ponds.					
3.7.3 Maturation ponds .					
3.7.4 Aerated lagoon.					
3.7.5 Oxidation ditch.					
3.7.6 Final clarifier .					
3.7.7 Gravity thickener.	106				
3.7.8 Drying beds.	107				
3.8 Choice of best and most economic design criteria	107				
options.					
3.9 Results.	108				
CHAPTER IV : COST ESTIMATION AND RESULTS.					
4.1 Kinds of costs.	17 9				
4.2 Cost comparison .					
4.3 Evaluation of operation and maintenance costs.					
4.4 Initial cost estimation .	181				
4.4.1 W.S.F. system.	181				
4.4.2 A.L. system.	183				
4.4.3 O.D. system.	184				
4.5 Use of computer in the cost estimation.					
4.6 Cost analysis.					

CHAPTER V: GENERAL DISCUSSION AND RECOMMENDATIONS 5.1 Introduction. 207 5.2 Differentiation between sewage treatment options. 208 5.3 Differentiation between the chosen treatment systems. 209 5.3.1 Required land area. 209 5.3.2 Total cost. 210 5.3.3 Capital cost. 210 5.3.4 Total cost /capita. 211 5.3.5 Operation and maintenance . 211 5.3.6 Efficiency. 212 5.3.7 Effluent reuse possibilities. 212 5.3.8 Simplicity of construction. 213 5.3.9 Electric energy needs. 213 5.4 Relation between variations in results and population. 214 5.5 Results discussion and evaluation. 219 CHAPTER VI: CONCLUSIONS AND RECOMMENDATIONS 6.1 Conclusions . 222 5.2 Recommendations. 224

REFERENCES

APPENDIX 1 : LIST OF COMPUTER PROGRAMMES

- 1.1 Wastewater stabilization prod system design and cost estimation programme.
- 1.2 Aerated lagoon system design and cost estimation programme.
- 1.3 Oxidation ditch system design and cost estimation programme.
- 1.4 Comparison programme between W.S.P., A.L. and O.D. system.

APPENDIX 2 : COST ITEMS CALCULATIONS

- 2.1 Items calculated for waste stabilization pond system.
- 2.2 Items calculated for aerated lagoon system.
- 2.3 Items calculated for exidation ditch system.

ARABIC SUMMARY

viii

LIST OF FIGURES

			: **;\$				
Fig.	(1-1)	Pathways of BOD ₅ removal in facultative ponds	7				
Fig.	(1-2)	Algae / bacteria relationship in an aerobic	9				
		pond					
Fig.	(1-3)	(i) Schematic of aerobic lagoon	26				
Fig.	(1-3)	(ii)Schematic of aerated facultative lagoon	26				
Fig.	(1-4)	Nitrification and denitrification in ditch					
Fig.	(1-5)	(i) Pasveer ditch					
Fig.	(1-5)	(ii) Carousel ditch					
Fig.	(3-1)	Effectiveness of changing depth on cost for	148				
		anaerobic pond in waste stabilization pend					
		system at $(R_a = 5 \text{ days})$					
Fig.	(3-2)	Anefficiency curve for facultative pond in	145				
		waste stabilization pond system at $(R_{\alpha} = 5 \text{ days})$					
Fig.	(3-3)	Effectiveness of changing depth on cost for	150				
		facultative pond in waste stabilization pond					
		system at (optimum D_{α} & R_{α} = 5 days)					
Fig.	(3-4)	Effectiveness of changing depth on cost for	151				
		maturation pond in waste stabilization pond					
		system at $(R_m = 5 \text{ days}) & (R_\alpha = 5 \text{ days})$					
Fig.	(3-5)	Effectiveness of changing depth on cost tor	: 52				
		maturation pond in waste stabilization pond					
		system at $(R_m = 5.5 \text{ days}) \% (R_a = 5 \text{ days})$					

- Fig. (3-6) . Effectiveness of changing depth on cost for 153 maturation pond in waste stabilization pond system at ($R_m=6$ days) & ($R_a=5$ days)
- Fig. (3-7) .. Effectiveness of changing depth on cost for 154 maturation pond in waste stabilization pond system at $(R_m=6.5 \text{ days})$ & $(R_a=5 \text{ days})$
- Fig. (3-8) . Effectiveness of changing depth on cost for 155 maturation pond in waste stabilization pond system at ($R_m = 7 \text{ days}$) & ($R_a = 5 \text{ days}$)
- Fig. (3-9) Choice of optimum ratention time for maturation 156 pond in waste stabilization pond system at $(R_a = 5 \text{ days})$
- Fig. (3-10) .Effectiveness of changing depth on cost for 157 anaerobic pond in waste stabilization pond system at ($R_{\rm c}$ = 6 days)
- Fig. (3-11). Efficiency curve for facultative pond in 158 waste stabilization pond system at ($R_{_{\rm cl}}=6$ days)
- Fig. (3-12) Effectiveness of changing depth on cost for 159 facultative pond in waste stabilization pond system at (optimum D_a , R_a = 6 days)
- Fig. (3-13) Effectiveness of changing depth on cost for 160 maturation pond in waste stabilization pond system at ($R_{\rm m}=5$ days) & ($R_{\rm a}=6$ days)

- Fig. (3-14) Effectiveness of changing depth on cost for 161 maturation pend in waste stabilization bond system at ($R_m = 5.5 \text{ days}$) & ($R_s = 6 \text{ days}$)
- Fig. (3-15) Effectiveness of changing depth on cost for 162 maturation pond in waste stabilization pond system at ($R_m = 6$ days) & ($R_a = 6$ days)
- Fig. (3-16) Effectiveness of changing depth on cost for 163 maturation pond in waste stabilization pond system at ($R_m = 6.5 \text{ days}$) & ($R_a = 6 \text{ days}$)
- Fig. (3-17) Effectiveness of changing depth on cost for 164 maturation pond in waste stabilization pond system at ($R_{\rm m}=7$ days) & ($R_{\rm m}=6$ days)
- Fig. (3-18) Choice of optimum ratention—time—for—maturation—165 pond in waste stabilization pond system at ($R_{_{\rm G}}$ = 6 days)
- Fig. (3-19) Effectiveness of changing depth on cost for 166 aerated lagoon in aerated lagoon system at ($R_{\rm r}$ = 2 days)
- Fig. (3-20) Effectiveness of changing depth on cost for 167 aerated lagoon in aerated lagoon system at ($R_{\rm p}=3~{\rm days}$)
- Fig. (3-21) Effectiveness of changing depth on cost for 168 aerated lagoon in aerated lagoon system at ($R_{\rm r}$ = 4 days)

Fig.	(3-22)	Effectiveness	of	changing	depth	σn	cost	For	165
		aerated lagoon	in	aerated la	goar, ≊ ₇	stem	at (R	r=	
		5 days)							

- Fig. (3-23) Effectiveness of changing depth on cost for 170 aerated lagoon in aerated lagoon system at (R_r = 6 days)
- Fig. (3-24) Choice of theoptimum retention time of aerated 171 lagoon in the A.L. system
- Fig. (3-25) Effectiveness of changing depth on cost for 172 maturation pond in the A.L. system at ($R_{\rm m}$ =5 days)
- Fig. (3-26) Effectiveness of changing depth on cost for 173 maturation pond in the A.L. system at (P_c=6 days)
- Fig. (3-27) Effectiveness of changing depth on cost for 174 maturation pond in the A.L. system at (R_=7 days)
- Fig. (3-28) Effectiveness of changing depth on cost for 175 maturation pond in the A.L. system at (R_m =8 days)
- Fig. (3-29) Effectiveness of changing depth on cost for 176 maturation pond in the A.L. system at($R_{\rm m}$ =9 days)
- Fig. (3-30) Choice of the optimum retention time of 177 maturation pond in the A.L. system at $(R_{\mu}=2)$
- Fig. (3-31) Choice of optimum depth of oxidation ditch in 178 the O.D. system
- Fig. (4-1) A Scketch illustrates pond lining and 182 protection items

xii