ECOLOGICAL AND BIOLOGICAL STUDIES ON THE PHLEBOTOMINE SAND FLIES (DIPTERA-PSYCHODIDAE) IN A CUTANEOUS LEISHMANIASIS FOCUS IN SINAI, EGYPT.

A Thesis
presented to the Faculty of Science
Ain Shams University

5.45.+7.

For the Award of the Ph. D. Degree

By

Shaaban Sayed Ismail El- Hossary B. Sc. and M. Sc.

Research Assistant, Research and Training Center on Vectors of Diseases, Ain Shams University. $, \qquad \ell^{|\mathcal{G}|}$

Department of Entomology
Faculty of Science
Ain Shams University.
Cairo, Egypt.

1997

THESIS EXAMINATION COMMITTEE

NAME	TITLE	SIGNATURE
	•••••	
SUPERVISO	RS:	
- Prof. Dr. B	ahira El Sawaf	
Head of Ento	mology Dept., Facul	ty of Science
Ain Shams U	niversity.	
	agdi Gebril Shehata	a , Entomology Dept., Faculty
	Ain Shams Universit	
- Prof. Dr. Ric	chard P. Lane	
Professor of l	Entomology, Head of	Entomology
Dept. Natura	History Museum - I	London.
- Dr. Nadai H	elmy	
Assistant pro	fessor of Entomology	, Entomology Dept.,
Faculty of So	ience - Ain Shams U	niversity.

Biography

Data and place of birth: 16- March 1957, Cairo

Degrees awarded: B. Sc. Entomology, 1981, Faculty of

Science. Ain Shams University, Egypt.

M. Sc. Entomology, 1989, Faculty of

Science. Zagazig University Benha branch.

Occupation: Research assistant, Research and Training

Center on Vectors of Diseases, Ain Shams

University.

Data of registration

for the Ph. D. : June, 1993.

ACKNOWLEDGEMENTS

The present work has been carried out in the Research and Training Center on Vectors of Diseases, Faculty of Science Building, Ain Shams University.

I wish to express my sincere gratitude to my supervisors who shared in suggesting the workscope, outlined the scheme of the study, supervised the work and for their kind guidance and encouragement throughout the period of the study, namely **Prof. Dr. Bahira El Sawaf**, Professor of Entomology, Head of Entomology Dept., Faculty of Science Ain Shams University, and the Director of the Research and Training Center on Vectors of Diseases, Ain Shams University, **Prof. Dr. Magdi Gebril Shehata**, Professor of Medical Entomology, Entomology Dept., Faculty of Science, Ain Shams University, **Prof. Dr. Richard P. Lane** Professor of Entomology, Head of Entomology Dept., Natural History Museum - London and **Dr. Nadia Helmy**, Assistant professor of Entomology, Entomology Dept., Faculty of Science, Ain Shams University.

Special appreciation to **Prof. Dr. Mohamed A. Kenawy**, Professor of Entomology, Entomology Dept., Faculty of Science, Ain Shams University, for his great help in the Statistical analysis of the data.

My deepest thanks to Mr. Wafik El Sayed, Administrator of Research and Training Center on Vectors of Diseases, for his kind help and offering facilities.

I also would like to express my thanks to all staff members of the Research and Training Center on Vectors of Diseases with special thanks to the sand fly group especially **Dr. Said Doha**.

My deepest thanks to my friend Mr. Yahia Shaheen, for his kind help.

This work was supported by a research project financed by Research and Training Center on Vectors of Diseases.

Contents

	Page	
Abstract	I	
List of tables	11	
List of figures	V	
1- Introduction	I	
II- Literature Review	6	
1- Distribution and species composition of sand flies	6	
1.1- History of sand flies in Egypt	6	
1.2- Sand fly bionomics	8	
1.3- Asociation between phlebtomine sand flies and		
plants	15	
2- Age structure of wild caught sand flies	20	
3- The life table characteristics of sand flies	26	
4- Scanning electron microscopy of the egg surface		
morphology of sand flies	31	
5-The role of rodents as a reservoir hosts for the	34	
leishmaniasis diseases		
5.1- Ecological studies on rodents	34	
5.2- Leishmaniasis in the world and in Egypt	3 7	
III- Materials and Methods	44	
1- Sand fly species composition in Sinai	44	
1.1- Description of Sinai peninsula	44	
1.1.1- Topography	44	
1.1.2- Climate	46	
1.1.3- Population	46	

3.3.7- Mean generation time		
3.4- Adult longevity and expectancy of life (e)		
3.4.1- Male life expectancy	131	
3.4.2- Female life expectancy	132	
3.5- Female productivity of infected and non-infected		
P. papatasi and P. sergenti	133	
4- Scanning electron microscopy of eggs of P. papatasi		
and P. sergenti	138	
5- Species composition and relative abundance of rodent		
species at Nekhel, North Sinai	142	
5.1- Species composition of rodent	142	
5.2- Monthly abundance	142	
6- Experimental infection.	145	
6.1- Infection using membrane feeding technique	145	
6.2- Experimental infection using an infected animal		
module	146	
6.3- Infection using naturally infected Meriones		
sacarmenti	149	
V- Discussions.	152	
VI- Summary	174	
VII- Literature cited		
Arabic summary .		

Abstract

Sand flies were collected extensively from 3 habitats (planted, domestic and wild) at Nekhel and El-Themed, North Sinai. *Phlebotomus papatasi*, *P. sergenti* and *P. kazeruni* were recorded at Nekhel and *P. papatasi* and *P. sergenti* at El-Themed. The species differed in their densities in the different habitats. *Phlebotomus* species seem to have a seasonal range of activity that starts from march and ends by November with the highest densities obtained during June and August.

Parity of P, papatasi was estimated through accessory glands inspection while the physiological age was determined through examination of the ovaries (follicular dilatation) and was confirmed by accessory glands inspection.

Comparative studies were made to estimate the life table characteristics of *P. sergenti* and *P. papatasi* originating from Sinai, and the effect of *L. major* infection on such attributes. No significant differences were found between the non infected species. Infection with L. major significantly reduced the productivity of both *P. papatasi* and *P. sergenti* whereas, it significantly reduced the number of eggs laid by *P. papatasi*.

By using scanning electron microscope, the eggs of the two species were not significantly different in their size but were distinct in their morphology.

Three species of rodents were collected namely Meriones sacramenti, Gerbillus pyramidum and Mus musculus.

Experimental infection of laboratory bred sand flies (*P. papatasi* and *P. sergenti*) by *L. major* was carried out by artificial feeding and by feeding directly on rodent species namely *Meriones sacramenti* and hamster. Parasites were detected from the guts of both *P. papatasi* and *P. sergenti* infected by the three above mentioned techniques. While migration to the head region was only recorded for *P. papatasi* fed artificially by membrane feeding.

II LIST OF TABLES

			Page
Table	1	Monthly average of some meteorolgical	
		elements concerning Nekhel city from	
		January 1993 to December 1994	47
Table	2	Total sand flies collected at Nekhel and	
		El-Themed (North Sinai) during 1993 and 1994	48
Table	3	Species composition and relative abundance of	
		sand flies in different habitats at Nekhel during	
		1993 and 1994	78
Table	4	Density and relative abundance of sand flies in	
		various habitats at Nekhel during 1993 and 1994	
		collected by sticky traps and CDC light traps.	82
Table	5	Density and relative abundance of sand flies at	
		El-Themed collected by sticky traps and CDC	
		light traps during 1993	85
Table	6	Sex ratio (SR) of sand flies and percentage of	
		females collected from different habitats at	
		Nekhel during 1993 and 1994	89
Table	7	Sex ratio (SR) of sand flies and percentage of	
		females collected by different type of traps at	
		El-Themed during 1993	90

Table 8 Seasonal abundance of sand fly species in	
relation to monthly mean temperature at	
Nekhel during January 1993 to October 1994	
(sand flies collected by Sticky traps)	
Table 9 Seasonal abundance of sand fly species at	
El-Themed during the period from April 1994	
to December 1994	98
Fable 10 Parous rate in Phlebotomus papatasi collected	
at Nekhel during the period of June to October	
1993 and	101
1994	
Table 11 Age structure of wild caught P. papatasi	
through observing the number of follicular	
dilation during 1993 and 1994	105
Table 12 Preoviposition period of non-infected and	
infected P. papatasi and P. sergenti females	107
Table 13 Number of eggs laid by non-infected and	
infected P. papatasi and P. sergenti females	109
Fable 14 Egg incubation period of non-infected and	
infected P. papatasi and P. sergenti	112
Fable 15 Percent and mean hatching of eggs laid by	
infected and non- infected P. papatasi	114
Γable 16 Larval development period of non-infected	
and infected papatasi and P. sergenti	117
Table 17 Pupation period of non-infected and infected	
P. panatasi and P. saraanti	110