NUCLEIC ACID ANALYSIS AND ITS APPLICATION IN HEMATOLOGICAL MALIGNANCIES

Essay

Submitted for Partial Fulfillment of Master Degree of Clinical and Chemical Pathology

Ву

Basma Moussa Moussa Tadros.

M.B., B.Ch.

616.07561 - R. M.

Under Supervision of

Prof. Dr. Sawsan Abd El-Moati Fayad

Professor of Clinical and Chemical Pathology Faculty of Medicine - Ain Shams University

Ass. Prof. Dr. Mona Ahmed Hassan Wahba

Assistant Professor of Clinical and Chemical Pathology Faculty of Medicine - Ain Shams University

Lecturer Dr. Sahar Samir Abd El-Maksoud

Lecturer of Clinical and Chemical Pathology Faculty of Medicine - Ain Shams University

Faculty of Medicine - Ain Shams University 2000

Acknowledgment

Thanks to the Mighty GOD for giving me the strength and power to carry out this work.

I wish to express my sincere gratitude and thanks to the eminent **Prof. Dr. Sawsan Abd El-Moati Fayad**, Professor of Clinical and Chemical Pathology, Ain Shams University, for giving me the honor of working under her supervision. Her continuous encouragement, close supervision and constructive guidance were the paramount axes in the initiation and progress of this work.

I would like to express my deepest gratitude to Ass. Prof. Dr. Mona Ahmed Hassan Wahba, Assistant Professor of Clinical and Chemical Pathology, Ain Shams University, for her loyal supervision, precious time, great concern with every minor detail in this work. To her, I owe my accomplishment, for inspite of her continuous guidance, remarkable effort, considerable help and meticulous revision, this fulfillment would have never taken place.

My great thanks goes to Lecturer Dr. Sahar Samir Abd El-Maksoud, Lecturer of Clinical and Chemical Pathology, Ain Shams University, for her constant support and remarkable help.

Most of all, I want to express my sincere gratitude and deepest thanks to my loving husband Ayman Maher, for providing me so much of his precious time, help and spiritual support that was of utmost importance in carrying out this work. Editing, scanning and setting the page layout is all attributed to him.

I, honestly, want to thank him for his faithful concern and loyalty in helping me accomplishing this work.

List of Contents

<u>List of Contents</u>	Page
List of Abbreviations	i
List of Tables	v
List of Figures	vi
Introduction	1
Aim of the Work	3
Review of Literature	4
Chapter 1: Genetic Principles and Molecular Biology	4
- Anatomy and Physiology of Genes	5
- Expression of Genetic Information Via the	
Genetic Code and Protein Synthesis	9
- Transcription	10
 Messenger RNA (m RNA) Metabolism 	13
 RNA Processing 	13
- Translation	16
Chapter 2: Molecular Genetic Techniques	20
- 1. Restriction Enzymes	23
- 2. Cloning Vehicles or (Microbial Vectors)	27
- 3. Nucleic Acid Probes	31
 Techniques for DNA Analysis 	37
I. Molecular Cloning	37
II. DNA Sequencing	43
III. Hybridization	48
1. Southern Blot Analysis	51
2. Dot Blot Analysis	54
3. Reversed Dot Blot Analysis	56
4. Western Blot Analysis	56
5. Northern Blot Analysis	56 57
6. In Situ Hybridization IV. Polymerase Chain Reaction (PCR)	57 61
iv. Polymerase Chain Reaction (PCR)	UI

List	of	Contents

List of Contents	Page
Qualitative PCR	65
 Quantitative PCR 	74
- Types of Mutations	82
Chapter 3: Application of Genetic Techniques in	
Hematological Malignancies	85
- Leukemias	87
- Myeloproliferative Disorders (MPDs)	92
- Lymphoproliferative Disorders (LPDs)	92
- Plasma Cell Dyscrasias	93
- Molecular Basis of Malignancy	94
- Use of Molecular Techniques for	
Hematologic Diagnosis	96
- Diagnosis of Hematological	
Neoplasms	97
 HLA Typing for Bone Marrow 	
Transplantation	102
- Analysis of Cell Origins in Bone	
Marrow Transplant Patients	102
 Diagnosis and Follow-up of Diseases 	
Associated with Known Cytogenetic	
Abnormalities	104
- Acute Lymphoblastic Leukemia (ALL)	106
 Acute Myeloid Leukemia (AML) 	113
- Chronic Myeloid Leukemia (CML)	118
- Chronic Myelomonocytic Leukemia	
(CMML)	130
- Chronic Lymphocytic Leukemia (CLL)	131
 Mantle Cell Lymphoma (MCL) 	132
- Hodgkin's Disease (HD)	135
 Non-Hodgkin Lymphoma (NHL) 	137
- Multiple Myeloma (MM)	140
- Leukemias / Lymphomas	144
 Hematological Malignancies 	146

List of Contents

List of Contents	Page
Conclusion	149
Recommendations	150
Summary	151
References	162

• A Adenine.

• a.a Amino acid.

• 5-AC 5-Azacytidine, demethylating agent.

• ALCL Anaplastic large cell lymphoma.

• ALK gene Anaplastic lymphoma kinase (protein kinase

gene).

• ALL Acute lymphoblastic leukemia.

• AML Acute myeloid leukemia.

• ARMS-PCR Amplification refractory mutation system -

polymerase chain reaction.

• **ASCT** Autologous stem cell transplantation.

• ASOH Allele specific oligonucleotide hybridization.

• ATP Adenosine triphosphate.

• BL Burkitt's lymphomas.

• BMT Bone marrow transplantation.

• bp Base pair.

• C Constant gene segment.

• C Cytosine.

• CCA Conventional chromosome analysis.

• **CD** Cluster differentiation.

• cDNA Complementary deoxyribonucleic acid.

• **CGH** Comparitive genomic hybridization.

• CISS Chromosomal in situ suppression.

• CLL Chronic lymphocytic leukemia.

• CMML Chronic myelomonocytic leukemia.

• CML Chronic myelogenous leukemia.

• CR Complete remission.

• CRM Cross - reacting material.

• DNA Deoxyribonucleic acid.

• dNTPs Deoxynucleotides triphosphates.

• ds Double stranded.

• **ECOR I** Escherichia coli restriction enzyme 1.

• EF Elongation factor.

• FA Folic acid.

• **FAB** French - American - British classification.

Fas-L Fas ligand.Fas-R Fas receptor.

• **FGFR3** Fibroblast growth factor receptor 3.

• FISH Fluorescent in situ hybridization.

• FR Folate receptor.

• G Guanine.

• GC Germinal center.

• G-CSF Granulocyte - colony stimulating factor.

• **GTP** Guanosine triphosphate.

• HD Hodgkin's disease.

• HIP1 gene Huntigtin interactin protein 1 gene.

• HLA Human leucocytic antigen.

• HLS Hematopoietic - lymphoid system.

HRS Hodgkin and Reed - Sternberg cells.

• IF Initiation factor.

• IFN- α Interferon - α .

• IGH Immunoglobulin heavy chain.

• J Joining gene segments.

• Kb Kilo base.

• LCR Ligase chain reaction.

• LDCA Low dose cytosine arabinoside.

• MCL Mantle cell lymphoma.

• MDR1 gene Multiple drug resistance 1 gene.

• MLC Mix lymphocyte culture.

• MM Multiple myeloma.

• MRD Minimal residual disease.

• m RNA Messenger ribonucleic acid.

• MRNPs Messenger ribonucleic particles.

• NHL Non - Hodgkin's lymphoma.

• NPM gene Nucleophosmin gene.

• PAA Polyacrylamide gel.

• PBPC Peripheral blood progenitor cells.

• PCR Polymerase chain reaction.

• PDGF beta R Platelet - derived growth factor beta receptor gene gene.

gene gene

• Ph Philadelphia chromosome.

• PTK Protein tyrosine kinase.

• p73 gene Tumor suppressive gene.

• QC-RT-PCR Quantitative competitive - reverse

transcriptase - polymerase chain reaction.

• RE Restriction enzyme or restriction

endonuclease.

• RF Release factor.

• RFLP Restriction fragment length polymorphism.

• r RNA Ribosomal ribonucleic acid.

• RNA Ribonucleic acid.

• RT-PCR Reverse transcription - polymerase chain

reaction.

• SnRNPs Small nuclear ribonucleic proteins.

• SSCP Single strand confirmation polymorphism.

• t translocation.

• T Thymine.

• TCRG gene T-cell receptor gamma gene.

• t RNA Transfer ribonucleic acid.

• U Uracil.

• UV Ultra violet.

• V Variable gene segment.

• VNTRs Variable number of tandem repeats.

• WHSC1 Wolf - Hirschorn malformation syndrome.

• YAC Yeast artificial chromosome.

• α-P³² Radioactive phosphorous.

List of Tables

List of Tal	oles	Page
Table 1.1	The genetic code messenger RNA codons for the amino acids	18
Table 2.1	Some common restriction endonuclease enzymes and their recognition sequences	26
Table 2.2	PCR conditions used in a typical PCR	63
Table 2.3	Characteristics of PCR amplimers	79
Table 3.1	Classification of acute leukemia	88
Table 3.2	Morphologic (FAB) classification of acute lymphocytic leukemia	89
Table 3.3	Morphologic (FAB) classification of acute non-lymphocytic leukemia	90
Table 3.4	Classification of myelodysplastic syndromes (MDSs)	91
Table 3.5	Classification of myeloproliferative disorders (MPDSs)	92
Table 3.6	Classification of lymphoproliferative disorders (LPDs)	92
Table 3.7	Classification of lymphomas	93
Table 3.8	Classification of plasma cells dyscrasias	93
Table 3.9	Use of molecular techniques for hematologic diagnosis	96

