

EFFECT OF LINING BY CONCRETE ON THE FLOW OF OPEN CHANNELS

BY

ENG. YASSER MOHAMMED SHAWKY MOHAMMED . YOUSEF

B.Sc. Civil Eng. Zagazig University National Water Research Center Hydraulic Research Institute

Thesis Submitted in Partial Fulfillment of the Requirement for the Degree of Master of Science in Civil Engineering

627.24 y.M.

SUPERVISED BY

Prof. Dr. Gamal Sadek Ebaid

Irrigation and Hydraulic Department Faculty of Engineering, Ain Shams University Prof. Dr. Ahmed Fakhry Kattab

Research Institute of Channel Maintenance National Water Research Center

Prof. Dr. Ali Mohammed Talaat

Irrigation and Hydraulic Department Faculty of Engineering, Ain Shams University Asst. Prof. Dr. Ahmed Fahmi Ahmed

Hydraulic Research Institute National Water Research Center

AIN SHAMS UNIVERSITY

1996

1- Prof. Dr. GAMAL S. EBAID
Professor of Irrigation Design,
Faculty of Engineering,
Ain Shams University, Cairo.

G. S. though

- 2- Prof. Dr. AHMED F. KHATTAB

 Professor of Irrigation Design,
 Research Institute of Channel Maintenance,
 National Water Research Center,
 Ministry of Public Works and
 Water Resources, Cairo.
- 3- Prof. Dr. SAMEH D. ARMANIOUS
 Professor of Irrigation, Drainage
 Faculty of Engineering,
 Ain Shams University, Cairo.

sal for

4- Prof. Dr. MOHAMED B. SAAD Director, Hydraulics Research Institute National Water Research Center, Ministry of Public Works and Water Resources, Cairo. M. Jourd

Date:

STATEMENT

This thesis is submitted to Ain Shams University for the degree of Master of Science in Civil Engineering.

The work included in this thesis was carried out by the author in the Department of Irrigation & Hydraulics, Ain Shams University, from September 1992 to September 1996.

No part of this thesis has been submitted for the degree or qualification at any other University or Institution.

Date:

Signature: 4, ? -Name: 4000 ex Mohamed Shawky

ACKNOWLEDGEMENTS

The author wishes to express his appreciation and gratitude to his supervisors, Prof. Dr. Gamal Sadek Ebaid, Prof. Dr. Ahmed Fakry Khattab, Prof. Dr. Ah Mohamed Talaat, and Dr. Ahmed Fahmi Ahmed, for their continuous exidence and help throughout the completion of the present investigation.

He also wishes to express his thanks to all his staff members at the Hydraulics Research Institute, Prof. Dr. M.M. Gaser, Prof. Dr. F.Z. El-Shibini, Dr. M.B.A. Saad, Dr. M.T. Gaweesh, Eng. I.A. El-Desouky, and all his colleagues for their help and cooperation during both the experimental work and the computer analysis.

Last, but not least, the author is deeply grateful to his family, parents, wife, and son for their sacrifices, blessings and moral support.

CONTENTS

LIST OF F	IGURE	S	Page
LIST OF T	ABLES		IV
LIST OF S	YMBOI	∡S	
ABSTRAC	Г		IX
1 INTROD	UCTION	٠	
2 PREVIOU	US WOI	RK	
2.1	Introd	uction	
2.2	Unifo	rm Flow .	
	2.2.1	Description	n of uniform flow 4
	2.2.2		ent of uniform flow 4
	2.2.3	Flow in or	pen channels 6
	2.2.4	The early	equations
		2.2.4.1	Chezy equation
		2.2.4.2	Chezy's resistance coefficient . 8
		2.2.4.3	Manning formula 11
		2.2.4.4	Determination of Manning
			roughness coefficient "n" 12
2.3	Canal	Lining	
	2.3.1	Types of 1	ining
		2.3.1.1	Portland cement concrete lining 14
		2.3.1.2	Cement mortar lining 17
		2.3.1.3	Precast portland cement concrete
			lining
		2.3.1.4	Brick lining 19
		2.3.1.5	Stone lining 20
		2.3.1.6	Soil cement lining 20

		2.3.1.7	Hot mixed asphalt concrete lining	21
		2.3.1.8	Cold mixed asphalt concrete lining	22
	2.3.2	Estimation	ng seepage losses from lined canals	22
	2.3.3	Choice of	of optimum dimensions of lined canals	26
3 FIELD A	ND EXI	PERIMEN	TTAL WORK	32
3.1	Introd	uction		32
3.2	Descr	iption of t	he Selected Lined Canals	34
3.3	Field	Measurem	ents Equipments	46
3.4	Field	Works and	d Measurements	48
	3.4.1	Water sa	mple collection	48
	3.4.2	Seepage	losses calculation	51
3.5	Field	Work Pro	cedure	53
	3.5.1	Velocity	and discharge measurements	53
	3.5.2	Measurer	ments of water surface slope	55
4 ANALYSI	S AND	DISCUSS	SION	57
4.1	Introd	uction		57
4.2	Discus	sion of th	e Results	60
	4.2.1	Relation	between water cross-section area a	and
		discharge		60
	4.2.2	Relation	between effective water depth and	
		discharge		62
	4.2.3	Relation	between hydraulic radius and	
		discharge		64
	4.2.4	Relation	between average velocity and value	οf
		(R^3S)		64
	4.2.5	Some use	ful equations	66
		4.2.5.1	Relation between wetted perime	ter
			and discharge	68
		4.2.5.2	Relation between top width	ınd
			discharge	68

	4.2.5.3	Relation between hydraulic radius
		and effective water depth 70
	4.2.5.4	Relation between ratio of water
		cross section area to effective
		water depth (A/D) and wetted
		perimeter (P)
4.3	Application of Dec	luced Equations in Canal Design 73
	4.3.1 Design prod	cedure
	4.3.2 Comments	on the solved examples 86
4.4	General Applicati	ion of Developed Equations and
	Recommendations	
4.5	Comparison Between	een Results of Developed Equations
	With Actual Design	n of Some Lined Canals 88
4.6	Comparison Betwe	en Lined Concrete Canals and Sandy
	Canals	
5 GENERA	L CONCLUSIONS	AND RECOMMENDATIONS 103
5.1	Conclusions	
5.2	Recommendations	
5.3	Summary	
REFERENC	C ES	
APPENDIX	A	
A.1	Contents of Append	dix (A)
A.2	Velocity and Disch	arge Measurements 115
APPENDIX	\mathbf{B}	
B.1	Contents of Append	dix (B)
B.2	Solid Suspensions i	n Water 140
B.3	Percentage Seepage	losses from the chosen concrete lined
	Canals	
Figures	1 46	
Tables	1 25	

LIST OF FIGURES

FIGU	Title P.	age
2.1)	Uniform Flow in Open Channel	. 5
2.2)	The Required Thickness of Concrete Lining for Different C	anal
	Discharge (U.S.Bureau of Reclamation)	28
2.3)	The Final Results of C as a Function of the Rigidity Factor	r, of
	Lining α	31
3.1)	Lined Canals Regions in Egypt	33
3.2)	Location Map for El-Nasr Canal and Its Branches	35
3.3)	Design Cross Sections for El Nasr Canal Km	
	(4,12,32.5,56.5,64,and71.5) from the Intake	39
3.4)	Design Cross Sections for:	
	1) El-Rash El-Sharkia Canal 2) El Rash El-Gharbia Canal	40
3.5)	Design Cross Sections for:	
	1) Branch 5 Right 2) Branch 6 El-Nasr 3) Branch 3 Righ	t 42
3.6)	Design Cross Sections for:	
	1) Moghaza El-Allia Canal 2)Branch 9 El-Banger 3) Branch	h 11
	El-Banger	43
3.7)	Design Cross Sections for:	
	1) Branch 17 El-Banger 2) Branch 14 El-Banger 3) Branch	10
	El-Banger	45
3.8)	The Braystoke Miniature Current Meter BFM. 002	47
3.9)	Cross Sectional Diagram for Braystoke BFM.002 Miniature	3
	Current Meter	49
3.10)	Accessories of Miniature Current Flow Meter BFM.002	50
3.11)	Inflow - Outflow Method for Estimating Seepage Losses	52
3.12)	Sketch Showing The Field Work Procedure for Measuring W	ater
	Velocity and Discharge by the Current Meter	54
4.1)	Relation Between Water Cross Section Area and Discharge	61
4.2)	Relation Between Effective Water Depth and Discharge	63
4.3)	Relation Between Hydraulic Radius and Discharge	65
4 4)	Relation Between Average Velocity and Value (R ³ S)	67

4.5)	Relation Between Wetted Perimeter and Discharge 69
4.6)	Relation Between Water Top Width and Discharge 71
4.7)	Relation Between Hydraulic Radius and Effective Water
	Depth
4.8)	Relation Between Ratio (A/D) and Wetted Perimeter 74
4.9)	Trapezoidal Section for Concrete Lined Canal With Side 3:277
4.10)	Relation Between Water Cross Section Area and Discharge 99
	1-for Concrete Lined Canals 2- for Sandy Soil Canals,
4.11)	Relation Between Effective Water Depth and Discharge 100
	1-for Concrete Lined Canals 2- for Sandy Soil Canals
4.12)	Relation Between Hydraulic Radius and Discharge 101
	1-for Concrete Lined Canals 2- for Sandy Soil Canals
4.13)	Relation Between Average Velocity and Value (R3S) 102
•	1-for Concrete Lined Canals 2- for Sandy Soil Canals
A-1)	Cross Section Survey and Discharge Measurement on Branch 5
	Right (Km 18.7 from El-Nasr Canal Intake) 128
A-2)	Cross Section Survey and Discharge Measurement on Branch 3
	Right (Km 11.55 from El-Nasr Canal Intake) 129
A-3)	Cross Section Survey & Discharge Measurement on El nasr
	Canal(Km 71.5)
A-4)	Cross Section Survey & Discharge Measurement on El-Nasr
	Canal(Km 56.5)
A-5)	Cross Section Survey & Discharge Measurement on Moghaza
	El-Allia (Km 30.85 from El-Nasr Canal Intake) 132
A-6)	Cross Section Survey & Discharge Measurement on El-Nasr
	Canal(Km 32.5)
A-7)	Cross Section Survey & Discharge Measurement on El-Nasr
	Canal (Km 4)
A-8)	Cross Section Survey and Discharge Measurement on El-Rash
	El-Sharkia Canal (Km 20.1 from El-Nasr Canal Intake) 135
A-9)	Cross Section Survey and Discharge Measurement on El-Rash
	El-Gharbia Canal (Km 24.35 from El-Nasr Canal Intake) 136
A-10)	Cross Section Survey and Discharge Measurement on Branch 6
	El-Nasr (Km 20.65 from El-Nasr Canal Intake) 137

A-11)	Cross Section Survey & Discharge Measurement on El-Nasr
	Canal(Km 12)
A-12)	Cross Section Survey & Discharge Measurement on El-Nasr
	Canal(Km 42)
A-13)	Cross Section Survey & Discharge Measurement on El-Nasr
	Canal(Km 64)
A-14)	Cross Section Survey & Discharge Measurement on Branch 9 El-
	Banger (Km 65.15 from El-Nasr Canal Intake)
A-15)	Cross Section Survey and Discharge Measurement on Branch 11
	El-Banger (Km 70.3 from El-Nasr Canal Intake) 142
A-16)	Cross Section Survey and Discharge Measurement on Branch 14
	El-Banger (Km 70.6 from El-Nasr Canal Intake) 143
A-17)	Cross Section Survey and Discharge Measurement on Branch 10
	El-Banger (Km 67.77 from El-Nasr Canal Intake) 144
A-18)	Cross Section Survey and Discharge Measurement on Branch 17
	El-Banger (Km 55.72 from El-Nasr Canal Intake) 145

LIST OF TABLES

Table	Title	Page
2.1)	Bazin Proposed Values for (m)	9
2.2)	Values of Powell's (e)	
2.3)	Values of the Coughness Coefficient for Concrete Lined	
	Canals	. , 15
4.1)	The Deduced Equations	. 75
4.2)	Design of Lined Canal by applying Manning Formula To	gether
	with the Formula of Thickness of Concrete Lining (Q =	80
	m^3/s)	. 80
4.3)	Design of Lined Canal by applying Manning Formula To	gether
	with the Formula of Thickness of Concrete Lining (Q =	30
	m ³ /s)	. 82
4.4)	Design of Lined Canal by applying Manning Formula Tog	gether
	with the Formula of Thickness of Concrete Lining (Q =	2
	$m^3/s) \dots \dots \dots \dots \dots \dots \dots \dots \dots $. 85
4.5)	summary of the Designed Three Examples	. 86
4.6)	Design Table for Concrete Lined Canals (Q from 0.1 to	10
	$m^3/s)$. 89
4.7)	Design Table for Concrete Lined Canals (Q from 12 to 8	30
	$m^3/s)$. 90
4.8)	Comparison Between Designed and Measured Hydraulic	
	Parameters in El-Nasr Canal	. 92
4.9)	Comparison Between Designed and Measured Hydraulic	
	Parameters in El-Bostan Canal	. 93
4.10)	Comparison Between Designed and Measured Hydraulic	
	Parameters in El-Rayah El-Nasry (2 Km Before Its Outle	t),and
	in Branch 6 El-Banger	. 94
4.11)	Ratio of Design Hydraulic Parameters Between Sandy So	il
	Canals and Concrete fined Canals at the Same Discharges (A, V.
	and D)	. 97
4.12)	Ratio of Design Hydraulic Parameters Between Sandy So	il