AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

STRUCTURAL ANALYSIS FOR SOME TYPES OF THIN RECTANGULAR PLATES BY USING FINITE DIFFERENCE METHOD

$\mathbf{B}_{\mathbf{Y}}$

MOHAMED ABDEL FADIL ALI SABER

B.Sc. (Civil Engineering, Structural department) Ain Shams University , 1983

THESIS

41164

Submitted in partial fulfilment for the requirements of the Degree of Master of Science in Civil Engineering

Supervised by

Dr. Ahmed Abdel Moneam Korashy
Prof of theory of structures
Prof of theory of structures
Prof of theory of structures Faculty of Engineering1 Ain Shams University

Faculty of Engineering Ain Shams University

Dr. Abdel Salam Ahmed Mokhtar Lecturer of theory of structures Faculty of Engineering Ain Shams University

CAIRO, 1991

<u>ACKNOWLEDGEMENTS</u>

The author is highly indebted to Dr. Abdel Salam Ahmed Mokhtar, Lecturer of theory of structures, Faculty of engineering, Ain Shams University for his valuable assistance without which, preparing such work in this form would have been impossible.

Sincere appreciation is acknowledged to Dr. Ahmed Abdel-Moneam Korashy, Professor of theory of structures, Faculty of engineering, Ain Shams University for supervising this work and offering valuable help.

Here, the author wishes to express his deep gratitude to Dr. Mahmoud Galal Hashish, Professor of theory of structures, Faculty of engineering, Ain Shams University for his valuable and continuous guidance and suggestions, helped greatly in carrying out the present work.

Also, the author appreciates the exam committee, specially Prof. Dr. Ibrahim Mahfouz, and Prof. Dr. Kamal Hassan for their valuable notices.

Finally, the author wishes to express his deeply thanks for Dr. Mahmoud A.H. Abu Zeid, chairman of Water Research Center, and Dr. Mohamed El-Mottassem Kotb, Director of High Aswan Dam Side Effects Research institute, for their continuous encouragement.

Examiners Committee

Name, Title & Affiliation

Signature

1- Prof.Dr. Ibrahim Mahfouz

.. I.M. Ibrahin

Prof. of theory of structures Zagazig University, Banha Branch, Cairo

2- Prof.Dr. Kamal Hassan

Prof. of Steel Structures Ain Shams University, Cairo

3- Prof.Dr. Ahmed Abdel Moneam Korashy

Prof. of theory of structures Ain Shams University, Cairo

4- Prof.Dr. Mahmoud Galal Hashish

Prof. of theory of structures Ain Shams University, Cairo

Date: 5/5/1991

Ahmest Korashy.

WHalle-

A Shahal

STATEMENT

This dissertation is submitted to Ain Shams University for the degree of Master of Science in Civil Engineering.

The work included in this thesis was carried out by the author in the department of Civil Engineering, Ain Shams University, from December 1984 to February 1991.

No part of this thesis has been submitted for a degree or a qualification at any other University or Institution.

Date: February, 12, 1991

Signature: Mohamed A. Fold

Name: Mohamed Abdel-Fadil Ali Saber

CONTENTS

Acknowledgement English abstract

- 1. Introduction
 - 1.1 Introduction
 - 1.2 Objects of the dissertation
 - 1.3 Layout of the study
- 2. Review of structural analysis of thin rectangular plate
 - 2.1 Introduction
 - 2.2 Main assumptions
 - 2.3 Review for equilibrium of thin rectangular element
 - 2.4 Review for the equilibrium equations of the grid (orthogonal rib) element
 - 2.4.1 Torsion of rectangular beams
 - 2.4.2 Torsional constant
 - 2.5 Derivation of equilibrium equation for ribbed plate element
 - 2.6 Boundary conditions
 - 2.6.1 Introduction
 - 2.6.2 Built-in edge
 - 2.6.3 Simply supported edge
 - 2.6.4 Freely supported edge
 - 2.6.5 Elastically supported edge
 - 2.7 Summary
- 3. Application of Finite difference and SOR method for thin rectangular plate
 - 3.1 Introduction
 - 3.1. Truncation error
 - 3.1.2 Methods of solution of difference equations
 - 3.1.3 Successive over relaxation method (SOR)
 - 3.1.4 Relaxation parameter
 - 3.1.5 Stopping criterion
 - 3.2 Principles of finite difference method
 - 3.3 Relations between finite difference and different partial derivatives
 - 3.4 The difference equations for equilibrium equations
 - 3.4.1 Thin rectangular plate element
 - 3.4.2 For orthogonal rib element
 - 3.4.3 For ribbed plate element
 - 3.5 Finite difference operators
 - 3.5.1 For ribbed plate element

 - 3.5.2 For internal forces of solid part of plate 3.5.3 For internal forces of rib element Central Library - Ain Shams University

- 3.6 Finite difference operators for different boundary conditions
 - 3.6.1 Simply supported edges
 - 3.6.2 Built-in edges
 - 3.6.3 Freely supported edges
- 3.7 Mathematical modeling
- 3.8 Step by step procedure for thin rectangular plate analysis
- 3.9 Comparison study for thin rectangular plate.
- 3.10 Summary
- 4. The structural behavior of rectangular ribbed plate due to transverse vertical load
 - 4.1 Introduction
 - 4.1.1 Assumptions and limitations
 - 4.2 Mathematical modeling
 - 4.2.1 Step by step procedure
 - 4.3 Validity of model
 - 4.3.1 Case studies

 - 4.3.2 Effect of number of ribs and uniform load 4.3.3 Effect of number of ribs and concentrated load
 - 4.3.4 Effect of continuity under uniform load
 - 4.4 Parametric study
 - 4.4.1 Effect of torsional rigidity of ribs
 - 4.4.2 Effect of stiffness rigidity of ribs
 - 4.5 Conclusions
- Structural analysis of rectangular plate having rectangular 5. hole
 - 5.1 Introduction
 - 5.2 Finite difference representation at the reentrant
 - 5.2.1 Simply or fixed edges at reentrant corner
 - 5.2.2 Freely supported edges at reentrant corner
 - 5.3 Computer program
 - 5.3.1 Step by step procedure
 - 5.4 Validity of model
 - 5.4.1 Comparison study
 - 5.4.2 Case studies
 - 5.4.2.1 Hole with simple edges
 - 5.4.2.2 Hole with built-in edges
 - 5.4.2.3 Hole with free edges
 - 5.4.2.4 Effect of size of hole on the internal forces
 - 5.4.2.5 Effect of hole position on the internal forces
 - 5.4.2.6 Effect of plate edges on the internal forces

5.5 Conclusions

- 6. Conclusions
 - 6.1 Introduction
 - 6.2 Conclusion
 - 6.3 Recommendation for future work
- 7. Appendix (I), 8. Appendix (II)
- 9. Arabic summary

Ain Shams University
Faculty of Engineering
Dept. of Civil Engineering

ABSTRACT OF THE M.Sc. THESIS

Submitted by: Mohamed Abdel-Fadil Ali Saber

Title of Thesis: Structural Analysis for some types of

rectangular plates by using Finite Difference

method

Supervisors:

(1) Prof.Dr. Ahmed Abdel Moneam Korashy

(2) Prof. Dr. Mahmoud Galal Hashish

(3) Dr. Abdel Salam Ahmed Mokhtar

Registration Date: 19-1-1991 Examination Date: 4-5-1991

Abstract:

Often encountered in practice are, conventional types of thin rectangular plates (simply supported plate, flat slab,...etc) that are used as floors in buildings for common purposes, rectangular ribbed plates stiffened by orthogonal ribs, and the rectangular plate having a rectangular hole with edges parallel to the plate edges that are, usually, used for large areas and heavy concentrated loads in industrial building.

The previous methods that produce the exact solutions of the above mentioned cases of plates, most of them, except the finite element analysis method, is valid only for specified loading and boundary conditions at the plate edges.

Herein, a mathematical modeling is prepared by using the finite difference analysis and successive over relaxation Central Library - Ain Shams University

method: it is used to analyze the behavior of the previous types of plates which are subjected to uniformly distributed loading, or concentrated loading at some points along the plate surface.

The results of this model for some types of rectangular plates (solid plate, ribbed plate or having rectangular hole) with different boundary conditions and different types of vertical loading are confirmed by comparing them with the results of the previous works. And it is used to make the parametric study for simply supported orthogonal ribbed plate to investigate the effect of torsional rigidity and stiffness rigidity of ribs on the resulted internal forces of plates due to transversely uniform loading, also it is used to study the distribution of the internal forces within the plate surface around the rectangular hole due to vertical loading.

key words:

Finite difference, Successive Over Relaxation, Relaxation parameter, Ribbed plates, Stiffness rigidity ratio, Torsional rigidity ratio, Rectangular hole, Boundary conditions.

CHAPTER (1)
INTRODUCTION

CHAPTER (1) INTRODUCTION

(1.1) Introduction:

Thin rectangular plates (simply supported plate, continuous plate, flat slab,...etc), are often used as floors in buildings for common purposes. For large areas when the presence of interior columns is not desirable as in industrial building, garages, conference halls,....etc, or for heavy concentrated loads, the plate is stiffened by ribs either in one direction or in two directions to decrease the dead load of the structure and increase the bending stiffness of the plate. Also we may have a rectangular hole as in core or in industrial buildings.

The structural analysis of thin rectangular plate element started in 1811 by Lagrange; and since then many researches to study different types of thin plates were made by using different techniques either mathematical closed form solutions or numerical solutions. The mathematical closed form solutions, are sound only for specified loading and boundary conditions at the pate edges. The numerical methods, on the other hand, are more versatile and applicable to a large variety of plate problems.

Herein, a mathematical modeling is prepared by using the finite difference technique and Successive Over Relaxation Method, (SORM), and it is used to analyze the behavior of rectangular plate either of conventional types (solid, continuous, flat slab,...etc), ribbed plate with different boundary conditions or having a rectangular hole within its boundaries, and subjected to uniformly distributed loading, nonuniform distributed loading or concentrated loading at some points along the plate surface.

The results of this model for some types of rectangular plates (conventional plates, ribbed plates or having a rectangular hole) with different boundary conditions and different types of vertical loading are confirmed by comparing them with the results of the previous works. This model is then used to make a parametric study for simply supported orthogonal ribbed plates to investigate the effect of torsional rigidity and stiffness of ribs on the resulted internal forces due to transversely uniform loading; also it is used to study the distribution of the internal forces within the plate surface around the rectangular hole due to vertical loading.

The present method is considered a direct one to produce the distribution of the internal forces (deflections and moments) for any configuration of a thin rectangular plate either, conventional type, stiffened or having a rectangular hole subjected to different conditions, while any one of the previous exact solution methods does not have this advantage.

(1.2) Objects of the dissertation

The object of this dissertation is to construct a new mathematical model by using finite difference technique and the successive over relaxation method to perform the following tasks:

- (1) Study the structural behavior of a thin rectangular plate subjected to a uniform, nonuniform or a concentrated load with different boundary conditions.
- (2) Investigate the effect of torsional rigidity and stiffness rigidity of ribs of simply supported rectangular ribbed plate subjected to transverse uniformly distributed loading on the plate internal

forces; also study the effect of different boundary conditions, number of orthogonal ribs and types of vertical loading on the internal forces of the plate.

(3) Determine the effect of existence of rectangular hole through thin rectangular plate - (with the condition that the edges of the hole must be parallel to the edges of the plate), subjected to transverse uniform or concentrated loading- on the internal forces of plate with different boundary conditions.

The analysis represented here applies to the elastic thin rectangular plates using the small deflection theory of the plate bending (Kirchoff hypotheses), as given in section (2.2).

(1.3) Layout of the study.

This study consists of six chapters labelled from (chapter 1) to (chapter 6); each chapter is concerned with a specific task as follows:

Chapter 1, gives the introduction to the work and the objectives of the dissertation.

Chapter 2, reviews the derivation of the partial differential equations of equilibrium for a thin rectangular plate element and for ribbed plate element. It also gives the differential equations for different boundary conditions.

Chapter 3, reviews derivation of the various difference equations either for equilibrium of plate element and ribbed plate element or for different boundary conditions from the first principles based on the averaged first central difference. It then gives the construction of the mathematical

model. Also, this chapter gives a comparison between the results of this model by using the Relaxation method (SORM), and the exact solution in the form of Fairer's series, for some square plates with different conditions and types of vertical load.

Chapter 4, Investigates the solution of the stiffened rectangular plate with orthogonal ribs by using this model. Also, this chapter contains the results of this model for three different cases of study: one for the effect of different boundary conditions, uniform load and concentrated load, second for the effect of increasing the stiffness of ribs, and the third to study the effect of increasing the torsional rigidity constant of ribs.

Chapter 5, is concerned with the study of the distribution of internal forces and deformations around the hole for a thin rectangular plate having a rectangular hole with edges parallel to the plate boundaries. The hole's edges may be simply supported, built-in or free. The edges of the plate may be simply supported or built-in. The plate is loaded with either a uniform load or a concentrated load.

Chapter 6, contains the conclusions for the types of thin rectangular plates that has been studied in this dissertation.