Ain Shams University Faculty of Engineering

STUDY OF FREE FLOW CONDITIONS FOR SILL UNDER GATES

BY

Eng. Gamal Mohamed Mustafa Abdelaal

A THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of MSc. in Civil Engineering

624.104 G.M.

SUPERVISED BY

Prof. Dr. M. ELNIIAZI HAMMAD

Professor of Irrigation Design and Vice Dean of Faculty of Engineering Ain Shams University Prof. Dr. TALAAT M. OWAIS

35791

Professor of Civil Engineering and Dean of Faculty of Engineering Zagazig University

Dr. Mahmoud Abdellateef Mohamed

Associate Professor, Irrigation and Hydraulics Department, Faculty of Engineering, Ain Shams University

Cairo 1990

Ain Shams University Faculty of Engineering

STUDY OF FREE FLOW CONDITIONS FOR SILL UNDER GATES

BY

Eng. Gamal Mohamed Mustafa Abdelaal

A THESIS

Submitted in Partial Fulfillment of the Requirements for the Degree of MSc. in Civil Engineering

SUPERVISED BY

Prof. Dr. M. ELNIIAZI HAMMAD

Professor of Irrigation Design and Vice Dean of Faculty of Engineering Ain Shams University Prof. Dr. TALAAT M. OWAIS

Professor of Civil Engineering and Dean of Faculty of Engineering Zagazig University

Dr. Mahmoud Abdellateef Mohamed

Associate Professor,
Irrigation and Hydraulics Department,
Faculty of Engineering,
Ain Shams University

Cairo 1990

بسم الله الرحين الرحيم

نِعْمَتَكَ ٱلَّتِي أَنْعَمْتَ عَلَى وَعَلَى وَالدِى وَأَنْ أَعْمَلَ صَلِحًا نِعْمَتَكَ ٱلَّتِي أَنْعَمْتَ عَلَى وَعَلَى وَالدِى وَأَنْ أَعْمَلَ صَلِحًا تَرْضَلُهُ وَأَصْلِحْ لِي فِي ذُرِيَتِي إِلِي تُبْتُ إِلَيْكَ وَإِلِى مِنَ ٱلْمُسْلِمِينَ فَيْ

صدق الله العظيم " سـورة الاحقاف"

TO MY FAMILY

EXAMINERS COMMITTEE

Name, Title & Affiliation

Signature

M HSCKetel

1. Prof. Dr. Mohamed El-Niazi Hammad

> Prof. of Irrigation Design and Hydraulics, and Vice Dean of Faculty of Engineering, Ain Shams University maria (deliatar).

2. Prof. Dr. Mohamed Wafaie Abdel-Salam

> Prof. of Irrigation Design, Faculty of Engineering, Ain Shams University

з. Prof. Dr. Mohamed Hamdy El-Kateb

> Prof. of Irrigation Design, Faculty of Engineering, Cairo University

Prof. Dr. Talaat Mohamed Owais 4.

> Prof. of Irrigation Design and Hydraulics, and Dean of Faculty of Engineering, Zagazig University

STATEMENT

This Thesis is submitted to \mathtt{Ain} Shams University for the degree of \mathtt{M} . Sc. in Civil Engineering.

The work included in this Thesis was carried out by the author in the Department of Irrigation and Hydraulics, Ain Shams University, from October 1986 to Sep. 1990.

No part of this Thesis has been submitted for a degree or a qualification at any university or institution.

Date : 31 / 17/1990

Signature:

Name :Gamal M. Mostafa

ACKNOWLEDGMENTS

I wish to express my deep gratitude and appreciation to Prof. Dr. Talaat M. Owais, Prof. of Irrigation design and Dean of Faculty of Engineering, Zagazig University, for his help, guidance, useful suggestions, and encouragement throughout this work.

Special acknowledgment to Prof. Dr. M. El-Niazi Hammad, Prof. of Irrigation design and Vice Dean of Faculty of Engineering, Ain Shams University. His kind supervision, comments and stimulating discussion are gratefully acknowledged and sincerely appreciated.

Special ward of thanks to **Dr. Mahmoud Abdellateef** Assoc. Prof., Irrigation and Hydraulic Dept., Faculty of Engineering, Ain shams university for his kind assistance, valuable advice and devoted time and effort throughout this work.

Special word of thanks to the staff of hydraulic laboratory, Ain Shams University.

Thanks to all my colleagues.

ABSTRACT

The objective of the present study is to investigate the effect of using under gate sill with different downstream slopes and of different heights upon characteristics of the free hydraulic jump. Ιn the theoretical study, the dimensional analysis was employed to relate the different factors affecting the studied phenomena. Moreover, the continuity equation and impulse-momentum principles, were used to get expressions relating the relative depth and the other parameters. Experiments were conducted on a small rectangular channel. Models with different downstream slopes (1:1, 3:1, 5:1, & 9:1) and of different heights (1, 2 & 3 $\,$ cm) were tested using variable flow parameters.

Using the experimental data, relationships were plotted to describe the main characteristics of the free hydraulic jump. The experimental data were analyzed and the results of this analysis were presented graphically in a number of charts.

It was found that the case on nonsilled-gate gives the shortest relative length of jump. While, the best downstream slope of sill was found to be 5:1 which gives the shortest relative length of jump within the tested models.

TABLE OF CONTENTS

SUBJECT	PAGE
ACKNOWLEDGMENTS	i
ABSTRACT	ii
LIST OF CONTENTS	iii
LIST OF TABLES	vii
LIST OF FIGURES	viii
LIST OF PHOTOS	xv
LIST OF SYMBOLS	xvi
ABBREVIATIONS	xix
CHAPTER ONE: INTRODUCTION	1
1.1 BACKGROUND	1
1.2 OBJECTIVES OF THE STUDY	1
1.3 ORGANIZATION OF THE THESIS	2
CHAPTER: TWO LITERATURE REVIEW	5
2.1 HISTORICAL BACKGROUND	5
2.2 HYDRAULIC JUMP ON SMOOTH HORIZONTAL FLOORS	7
2.3 FORCED HYDRAULIC JUMP	20 .
2.4 EFFECT OF FLUME SIZE ON THE JUMP LENGTH	62
2.5 FLOW UNDER SILLED GATES	63
2.6 CRITICAL EVALUATION OF THE AVAILABLE LITERATURE	67
CHAPTER THREE: THEORETICAL STUDY	. 68
3.1 INTRODUCTION	<i>c</i> o

3.2 DIMENSIONAL ANALYSIS	. 68
3.3 THE MACROSCOPIC APPROACH	. 72
CHAPTER FOUR: EXPERIMENTAL ARRANGEMENT	77
4.1 INTRODUCTION	
4.2 EXPERIMENTAL SETUP	. 77
4.2.1 The Flume	
4.2.2 The Stilling Chamber	
4.2.3 The Over Head Tank	
4.2.4 The Constant Head Tank	81
4.2.5 Instrument Carriage	81
4.3 METHODS OF MEASUREMENTS	83
4.3.1 Discharge Measurements	83
4.3.2 The Right Angled V-notch Calibration	84
4.3.3 Water Depth Measurements	86
4.3.4 Water Surface Measurements	86
4.3.5 Measurement of Carriage Positions	86
4.4 THE EXPERIMENTAL MODELS	86
4.5 THE FLOW CIRCUIT	89
4.6 TEST PROCEDURES	89
CHAPTED FIVE, EVDEDIMENTAL DECUL TO	
CHAPTER FIVE: EXPERIMENTAL RESULTS	. 92
5.1 INTRODUCTION	92
5.2 CASE OF HYDRAULIC JUMP	92
5.2.1 The Relative Depth	92
5.2.2 The Relative Jump Length	101

5.2.3 The Relative Energy Loss	101
5.3 CASE OF JET	118
5.3.1 The Maximum Relative Depth	118
5.3.2 The Relative Tailwater Depth	118
5.3.3 The Relative Apex Length	118
5.3.4 The Relative Jet Length	118
CHAPTER SIX: ANALYSIS AND DISCUSSION OF RESULTS	124
6.1 INTRODUCTION	124
6.2 CASE OF HYDRAULIC JUMP	124
6.2.1 The Relative Depth of The Jump	124
6.2.2 The Relative Length of The Jump	133
6.2.3 The Relative Energy Loss	142
6.3 CASE OF JET	151
6.3.1 The Relative Apex Depth	151
6.3.2 The Relative Tail Water	151
6.3.3 The Relative Apex Length	153
6.3.4 The Relative Jet Length	153
6.4 SELECTION OF SILL HYDRAULIC DIMENSIONS	155
CHAPTER SEVEN: THEORETICAL VERIFICATION AND EVALUATION	
OF THE STUDY	158
7.1 INTRODUCTION	158
7.2 DETERMINATION OF THE PARAMETER η	158
7.3 GENERALIZATION OF THE PARAMETER η	159
7.4 EVALUATION OF THE STUDY	168

CHAPTER EIGHT: CONCLUSIONS, APPLICATIONS AND	
RECOMMENDATIONS	171
7.1 CONCLUSIONS	171
7.2 APPLICATIONS	173
7.3 RECOMMENDATIONS	173
APPENDICES APPENDIX ONE : REFERENCES	175
APPENDIX TWO: LABORATORY MEASUREMENTS APPENDIX THREE: ARABIC SUMMARY	

LIST OF TABLES

TABLE No.	TITLE	PAGE
2.1	Length of Hydraulic Jump on Sloping	
	Channel According to Ref. [17].	27
4.1	Key Table For The Actual Sills	
	Used in The Experimental Works	87
6.1	Values of A and B of Eq.(6.1)	125
6.2	Values of A_2 and B_2 of Eq.(6.2)	133
6.3	Values of A_{a} and B_{a} of Eq.(6.3)	142
7.1	Values of g and g of Eq.(7.1)	159
7.2	Values of C_1, C_2' of Eq. (7.3) and	
	C2, C2 of Eq. (7.4)	162
7.3	Values of Constants of	
	Eq. (7.6) to (7.9)	164
7.4	Sample of Results of the	
	Computer Program	165

LIST OF FIGURES

FIGURE No.	TITLE	PAGE
3.1	Definition Sketch	69
4.1	General Arrangement of The Apparatus	
	Used	78
4.2	Water Circle Diagram	90
5.1	Relation Between F_4 and Y_2/Y_4	
	For Test No. 1	93
5.2	Relation Between F_4 and Y_2/Y_4	
	For Test No. 2	93
5.3	Relation Between F_{i} and y_{i}/y_{i}	
	For Test No. 3	94
5.4	Relation Between F_4 and F_2/F_4	
	For Test No. 4	94
5.5	Relation Between F_{i} and y_{i}/y_{i}	
	For Test No. 5	95
5.6	Relation Between F_1 and Y_2/Y_1	
	For Test No. 6	95
5.7	Relation Between F_1 and F_2/F_1	
	For Test No. 7	96
5.8	Relation Between F_i and y_2/y_4	
	For Test No. 8	96
5.9	Relation Between F_i and Y_2/Y_i	
	For Test No. 9	97
5.10	Relation Between F_1 and Y_2/Y_1	
	For Test No. 10	97
5.11	Relation Between F_{i} and Y_{2}/Y_{i}	
	For Test No. 11	98
5.12	Relation Between F_1 and Y_2/Y_1	
	For Test No. 12	98
5.13	Relation Between F_i and Y_2/Y_i	
	For Test No. 13	99