

DESIGN OF SMALL EARTHEN CANALS USING THE REGIME TYPE EQUATION

Ву

TAREK AHMED EL-SAMMAN B.Sc. Ain Shams University 1984

41170

627 13

A THESIS

-7.1

Submitted in Partial Fulfilment For Degree of Master of Science in Civil Engineering

SUPERVISED BY

Prof. Dr.MOHAMED WAFAIE ABDELSALAM Irrigation and Hydraulics Department, Faculty of Engineering - Ain Shams University

Prof. Dr. AHMED FAKHRY KHATTAB
Director of Research Institute of Weed Control and
Channel Maintenance, Water Research Center

Dr. ABDEL-KAWI KHALIFA

Associate Professor, Irrigation and Hydraulics Department
Faculty of Engineering - Ain Shams University

AIN SHAMS UNIVERSITY Calro, Egypt 1991

Examiner Committee

Signature

1. Prof. Dr. MOHAMED EL-NIAZI HAMMAD

Associate Dean for Research, Faculty of Engineering, Ain Shams University, Cairo.

2. Prof. Dr. MOHAMED HAMDY EL-KATEB

Professor of Irrigation Designs, Faculty of Engineering, Cairo University.

3. Prof. Dr. AHMED FAKHRY KHATTAB Head of Research Institute of Weed

Control and Channel Maintenance.

of Engineering, Ain Shams University. 4. Prof. Dr. MOHAMED WAFAIE ABD EL-SALAM

STATEMENT

This dissertation is submitted to Ain Shames University for the degree of Master of Science in Civil Engineering.

The work included in this thesis was carried out by the author in the Department Irrigation and Hydraulics, Faculty of Engineering, Ain Shames University, from 13-10-1986 to March 1991.

No part of this thesis has been submitted for a degreeor a qualification at any other University or Institution.

Date :
Signature:
Name :

ACKNOWLEDGEMENTS

I would like to express my deep appreciation and gratitude to Prof. Dr. Mohamed Wafaia Abdelsalam, Faculty of Engineering, Ain Shams University for his constant supervision, continuous and patient guidance as well as generous aid and constructive criticism throughout this work.

Acknowledgements are greatfully extended to Prof. Dr. Ahmed Fakhry Khattab, Director of Research Institute of Weed Control and Channel Maintenance, Water Research Center, Ministry of Public Works and Water Resources, for his valuable guidance and encouragement during the field work and the analysis of the results.

I am greatly indebted to Dr. Abdel Kawi Khalifa, Associate Professor, Faculty of Engineering, Ain Shams University, for his kind supervision, valuable comments, and encouragement during the completion of this work.

I would like also to express my deepest gratitude to Eng. Zenab El-Gharably, Deputy Director of Research Institute of Weed Control and Channel Maintenance, Water Research Center, Ministry of Public Works and Water Resources, and I am greatly indebted to the field team work.

Finally, the author would thank Prof. Dr. Mahmoud Abu-Zeid, Chairman of water Research Center of Ministry of Public Works and Water Resources.

ABSTRACT

During the last 40 years the design practice for earthen canals in Egypt was based on El-Difrawy, Molesworth, and Yenidonia regime equations. These equations were deduced from the analysis of collected data for some stable earthen canals before the construction of High Aswan Dam (H.A.D). At present such equations become inadequate for the new regime occurred to the canals systems, and new design concept is needed.

Investigations were carried out in Egypt (Khattab et al. 1985,1987) based on field study to some stable canals and on many collected data available at the Ministry of Public Works and Water Resource and others, where a series of design regime type equations for earthen canals were deduced. These equations have correlated the relationship between the flow parameters and the canal geometrical elements of water crosssection area and the water surface slope. These equations are only valid for designing of stable earthen canals having sand loam bed and cohesive banks with discharges range from 2.0 to 200 m^3/sec , and for canals having sand bed and banks with discharge range from 90 to 200 m³/sec. Applying these equations for discharges these limitations, out of unpracticable values will be obtained, for that the present work is made to complete the discharge gab which is not taken in Khattab et al. equations.

The work of the present investigation is based mainly on field study of 22 carefully selected stable irrigation channels in Egypt. From the analysis of the collected data a set of regime type equations are deduced.

Results showed that the deduced equations can be used safely in Egypt for designing stable earthen canals having cohesive soil bed and banks (silt-clay) with discharges ranged from 0.1 to 2.0 $\rm m^3/sec$, and for canals having sandy soil (sand bed and banks) with discharge ranged from 0.1 to 5.0 $\rm m^3/sec$.

CONTENTS

			Page
		•••••	i
ABSTRACT		• • • • • • • • • • • • • • • • • • • •	
		••••••	
		•••••	
		• • • • • • • • • • • • • • • • • • • •	
LIST OF	SYMBOLS .	•••••••••••••••••••••••••••••••••••••••	ΧV
CHAPTER	I	INTRODUCTION	1
CHAPTER	II	LITERATURE REVIEW	
	2-1	Introduction	4
	2-2	Flow In Open Channels	4
	2-2-1	The Chezy's Formula	6
	2-2-2	The Manning's Formula	8
	2-2-3	Darcy and Weisbach Equation	8
	2-2-4	Ganguillet's and Kutter's Formula	10
	2-2-5	Bazin's Formula	10
	2-2-6	Pavlousky's Formula	12
	2-2-7	Powell's Formula	12
	2-3	Design Methods of Stable Alluvial Canals	13
	2-4	The Regime Approach	13
	2-4-1	Kennedy's Formula	13
	2-4-2	Lindley's Equation	. 14
	2-4-3	Lacey's Equation	16
	2-4-4	Bose's Equation	17
	2-4-5	Malhotra's Equation	17
	2-4-6	White's Equation	18
	2-4-7	Inglis's Equations	18
	2-4-8	Blench's Equation	19
	2-4-9	Leopold's and Maddock's Equations	20

		Marshall Nixon's Equations	
	2-4-11	Simons's and Albertson's Equation	2:
	2-4-12	Anding M.G.Equation	23
	2-4-13	Shrikishna V.C.Equations	24
	2-4-14	Einstein and Barbarossa	25
		Engelund's Equation	
		Knoraz's Equation	
	2-4-17	Garde's and Raju's Equation	28
	2-5	Tractive Force Method	29
	2-5-1	Tractive-Force Ratio (K)	
	2-5-2	Shields's and White's Equations	
	2-5-3	White's Formula	
	2-5-4	Leliavsky's Chart	
	2-5-5	Lane's Equation	
	2-6	Practical Studies of Design Canals in Egypt	
	2-6-1	Ghaleb's Equation	
	2-6-2	Molesworth's and Yendunia's Equations	
	2-6-3	Mostafa's Equation	
	2-6-4	El-Difrawy's Equation	
	2-6-5	A.M.El-Banna's Equation	
	2-6-6	Kansoh's Formula	
	2 - 6-7	Prof. Dr. M.Wafaie and Prof. Dr. G.S.Ebaid	
		Charts	47
	2-6-8	Khattab and Others Equations	
			• /
CHAPTER	III	THEORETICAL APPROACH	
	3-1	Introduction	53
	3-2	Equation Describing The Geometry of Canals.	
	3-3	Dimensional Analysis	55

CHAPTER	IA	FIELD AND EXPERIMENTAL WORK	
	4-1	Introduction	58
	4-2	Description and Characteristics of The	
		Selected Canals	60
	4-2-1	Sahim El-Nili Canal	
	4-2-2	El-Nashw Canal	60
	4-2-3	Keman Canal	65
	4-2-4	El-Zawia Canal	65
	4-2-5	Om El-Karam El-Gedida Canal	65
	4-2-6	Bakatarus Canal	69
	4-2-7	El-Alfia Canal	69
	4-2-8	Shelbaya Canal	72
	4-2-9	Gazal Canal	72
	4-2-10	Al-Morabaa Canal	72
	4-2-11	El-Thamaniat Canal	76
	4-2-12	Waslet Behwash El-Yossra Canal	76
	4-2-13	El-Ghefara Canal	81
	4-2-14	El-Gezira canal	81
	4-2-15	Ayoub Canal	81
	4-2-16	Kafr Hakim Canal	85
	4-2-17	Nahia Canal	85
	4-2-18	Abu-Ageila Canal	85
	4-2-19	El-Gebaly Canal	88
	4-2-20	Emtedad Zat El-Kom Canal	88
		Bahr El-Raml El-Gedida Canal	
	4-2-22	El-Malak Canal	93
		Field Works	
		The Equipment of Field Measurement	96
		Velocity and Discharge Measurements	
		Measurement The Slope of Water Surface	
	4-4	Laboratory Tests	
	4-4-1	The Sieve Tests	

CHAPTER	V	EXPERIMENTAL RESULTS AND ANALYSIS
	5-1	Introduction
	5-2	Relation Between Discharge and Cross-
	5-3	Section Area 108 Relation Between Discharge and Average
		Depth 111
	5-4	Relation Between Discharge and Hydraulic
		Radius 111
	5-5	Relation Between Discharge and Wetted
		Perimeter 116
	5-6	Relation Between Discharge and Top Width 116
	5 - 7	Relation Between Average Velocity and SR 3 121
CHAPTER	vı	DISCUSSION OF RESULTS
	6-1	Introduction 124
	6-2	Design Procedure 124
	6-2-1	Determination of The Geometrical Cross-
		Section Area 124
	6-2-2	Determination of The Average Depth 125
	6-2-3	Determination of The Hydraulic Radius 125
	6-2-4	Determination of The Wetted Perimeter 125
	6-2 - 5	Determination of The Water Top Width 125
	6-2-6	Determination of Water Surface Slope 126
	6-3	Application of Design Procedure 126
	6-3 - 1	Design of Cohesive Soil Canals 127
	6-3-2	Design of Sandy Soil Canals 129
	6-4	Result Discussions 131
	6-5	Comparison Between The Present Approach
		and The Other Methods 132
	6-6	Comparison Between The Present Approach and
		Khattab Et Al. Equations
	6-7	Computer Program

-vili-

CHAPTER	ΔI	ī	C	ONCLUSIONS	 • • •	 	• •	 ٠	 	 	148
REFERENCES	٠.			• • • • • • • • • • • • • • • • • • • •	 	 		 	 	 	150
				Experimente							
APPENDIX											
APPENDIX	**	C		Computer Pr							
ARABIC SUM	AR	Y									

LIST OF FIGURES

Figure	No.	Title	Page
2-1	D€	rivation of Chezy's formula for uniform flow	
		open channel	
2-2		alysis of forces acting on a particle resting	
		the surface of a channel bed	31
2-3		gles of repose of non-cohesive material	
2-4		mprehensive chart yielding critical drag	
		censity as function of grain diameter	35
2-5	Lin	miting tractive forces recommended for canal	
		sign by professor E.W.Lane	36
2-6		sign of stable trapezoidal canals and drains	- •
		th 1:1 side slopes	39
2-7		n-silting canals chart, Haseeb Chart - side	
		le slopes 1:1	41
2-8		-silting canals chart, Haseeb Chart - side	
		ppes 1:1	42
2-9		-silting canals chart, Haseeb Chart - side	
		pes 2:1	43
2-10		-silting canals chart, Haseeb Chart - side	
		pes 3:2	44
2-11	Pro	posed diagram for the design trapezoidal	• •
	поп	-silting canals in Egypt with 1:1 side	
		pes	46
2-12	Des	ign charts trapezoidal canal sections side	••
		pes 1:1 by Prof.Drs. M.Wafaie & G.S.Ebaid	48
2-13		ign charts trapezoidal canal sections side	••
		pes 2:1 by Prof.Drs. M.Wafaie & G.S.Ebaid	49
2-14		ign charts trapezoidal canal sections side	7.7
		pes 3:2 by Prof.Drs. M.Wafaie & G.S.Ebaid	50

Figure		a ge
4-1		
4-2	Sahim El-Nili Canal during dry period	
4-3	Sahim El-Nili Canal during dry period	
4-4	Location map for Sahim El-Nili Canal	
4-5	The intake of El-Nashw Canal	
4-6	El-Nashw Canal	
4-7	Location map for El-Nashw Canal	64
4-)	Actual measured cross-section for Sahim El-Nili,	
4-8	El-Nashw, and El-Zawia Canals	
-	Keman canal	
4-9	El-Zawia Canal	
4-10	Location map for Om El-Karam El-Gedida Canal	
4-11	Om El-Karam El-Gedida canal during dry period	
4-12	Bakatarus Canal during dry period	
4-13	Location map for Bakataras Canal	
4-14	Actual measured cross-section for Om El-Karam El-	
4 15	Gedida, El-Alfia, Shelbaya, and Ghazal Canals	
4-15	Intake of Gazal Canal	
4-16	Gazal Canal during dry period	74
4-17	Location map for El-Alfia, Shelbaya, Ghazal,	
	Al-Morabaa Canals	75
4-18	Location map for El-Thamaniat, Waslet Behwash	
	El-Yossra and El-Ghefara Canals	
4-19	El-Thamaniat Canal during dry period	78
4-20	Actual measured cross-section for Al-Morabaa 2,	
	El-Thamaniat 1, Waslet Behwash El-Yossra 2, and	
	El-Ghefara 2 Canals	79
4-21	Location map for El-Ghefara and Waslet Behwash	
	El-Yossra Canals	80
4-22	Location map for El-Gezira and Emtedad Zat	
	El-Kom Canals	82
4-23	Actual measured cross-section for El-Gezira 1	
	Canal, and Emtedad Zat El-Kom 1 Canal	83