Ain Shams University Faculty Of Engineering

EFFECT OF STEEL FIBERS ON THE BEHAVIOUR OF R.C. JOINTS

"WITH PARTICULAR REFERENCE TO RIGHT ANGLED OPEN CORNER JOINTS"

BY

HOSSAM EL-DIN HASSAN MAHMOUD

[24,182-

A Thesis

Submitted in partial fulfillment for the requirements of

Master of Science Degree in Structural Engineering

Supervised by

41354

Prof. Dr. SHAKER EL-BEHAIRY

Prof. Dr. MOHAMED I. SOLIMAN

Professors of Reinforced Concrete Structures

Ain Shams University

and

Dr. ALY SHERIF A. FAIAD A.

Lecturer of Reinforced Concrete Structures _ Ain Shams University

1992

EXAMINERS COMMITTEE

Name and Affiliation

Signature

- 1 Prof. Dr. KAMAL N. GHALT
 Professor of R.C. Structures.
 Ain Shams University
- 2 Prof. Dr. HASSAN M. HOSNY
 Professor of R.C. Structures.
 Helwan University
- 3 Prof. Dr. SHAKER EL-BEHAIRY

 Professor of R.C. structures,

 Ain Shams University

(Supervisor)

4 - Prof. Dr. MOHAMMED I. SOLIMAN

Professor of R.C. Structures.

Ain Shams University

(Supervisor)

Halle

A. Sehand

ACKNOWLEDGEMENT

The author is deeply grateful to Prof. Dr. Shaker El-Behairy , Professor of R.C. structures . Ain Shams University , for his kind and constant supervision , planning guidance . and valuable advice during all phases of this work .

The author wishes to express his sincere appreciation—to Prof. Dr. Mohammed I. Soliman, Professor of R.C. Structures, Ain Shams University for his generous support guidance, and valuable advice during all phases of this work.

The author express his deepest gratitude to Dr. Aly Sherif A. Faiad, Lecturer of R.C. Structures, Ain Shams University for his kind and constant supervision, for his sincere help, planning guidance, encouragement, and cooperation to the fullest during all phases of this work.

The author also wishes to thank all members of the staff of the R.C. lab. for their cooperation .

The author dedicates this thesis to his fiance Eng. Neveen Saad for her immeasurable help during the experimental work and preparation of the manuscript of this study and for her patience cooperation and understanding.

STATEMENT

This thesis is submitted to Ain Shams University for the Master of Ecience degree in Civil Engineering (Structural) .

The work included in this thesis was carried by the author in R.C laboratory of Faculty of Engineering of Ain Shams University

No part of this thesis has been submitted for a degree or a qualification at any other university or institution .

Date :

Name : HOSSAM EL-DIN HASSAN MAHMOUD

Signature :

NOTATIONS

S.F.	Steel fiber
S. F .C.	Steel fiber concrete
I/d	Fiber aspect ratio
$V_{\mathbf{f}}$	Fiber volume as a fraction of the volume of the composite
$W_{\mathbf{f}}$	Weight of fibers as percentage of the concrete matrix
$A_{\mathbf{g}}$	Weight of aggregate
M	Modular ratio which equals E_f/E_m
L_{ε}	Critical fiber length
L	Fiber length
η_1, η_2	Efficient factors of fiber orientation and fiber length respectively
V _f (crit)	Critical fiber volume
σ _{mu} , ε _{mu}	Ultimate stress and strain of the matrix
M_{cr}	First cracking moment
M _{ult.}	Ultimate moment
h	Height of rectangular section
b	Width of rectangular section
z	Distance from the neutral axis to the compression face of the section
E _{c:}	Initial tangent modulus of the composite
Ecs	Secant tangent modulus of the composite
a,b,k _c	Constants of the equation for modulizing the stress-strain relationship of the composite
$\sigma_{\rm c1}, \epsilon_{\rm c1}$	Maximum compression stress of the composite and the corresponding strain
W/c	Water-cement ratio
[B]	Strain matrix
[K]	Element stiffness matrix
[D]	Elasticity matrix

E	Young's modulus
S.G	Specific gravity
U	Nominal bond stress at bar reinforcement matrix interface
G	Modulus of rigidity
ν	Possion's ratio
K _v	Dowel spring stiffness
$K_{\rm h}$	Bond pullout spring stiffness

Other symbols not listed are defined where they are used.

TABLE OF CONTENTS

Introduction	1
Objectives	2
Scope and contents	3
* PART I : REVIEW OF PREVIOUS WORK	
* CHAPTER (1) : NATURE AND PROPERTIES OF STEEL FIBER	
1-1 Introduction	7
1-2 Classification of fiber	7
1-3 Steel fiber properties	9
1-4 Steel fiber concrete in the fresh state	12
1-5 Factors affecting workability of S.F.C	14
1-5-1 Effect of the natures of fiber	14
1-5-2 Effect of the fiber aspect ratio	14
1-5-3 Effect of fiber concentrations	16
1-5-4 Effect of the aggregate size and volume	17
1-5-5 Effect of adding additives	19
1-6 Mixing methods of steel-fiber concrete mixes	21
1-7 Compaction techniques of steel-fiber mixes	22
1-8 Conclusions on workability of steel-fiber	
concrete mixes	23
* CHAPTER (2): MECHANICAL PROPERTIES AND BEHAVIOUR	OF
STEEL-FIBER CONCRETE ELEMENTS UNDER FLEX	URE
2-1 Introduction	3:

2-2	Mechanical properties of steel fiber concrete	32
2-2 - 1	Uniaxial tension before cracking	32
2-2 - 1-a	Effect of fiber prientation on the uniaxial	
	tension of S.F.C	33
2 - 2-1-b	Effect of fiber length on the unlaxial tension	
	of S.F.C	34
2-2-2	Uniaxial tension after cracking	35
2-2-3	Idealized stress-strain curve for fibrous	
	concrete in tension	36
2-2-4	Uniaxial compression	37
2-2-5	Modulus of elasticity in compression	38
2-2-6	Compressive stress-strain curve	38
2-2-7	Flexural strength	39
2-3	Flexural behaviour of steel-fiber concrete	
	elements	40
2-3-1	First crack and ultimate moment capacity	
	of fiber-reinforced concrete sections	42
2-3-1-1	Cracking moment	42
2-3-1-2	Ultimate moment capacity	44
2-3-1-3	Ultimate moment capacity of fiber-concrete	
	sections with bar reinforcement	46
2-3-2	Previous experimental work	48
2-3-3	Ductile behaviour of steel fiber	
	concrete elements	52
2-3-4	Toughness of steel fiber concrete elements	53
2-4	Conclusions	54

* CHAPTER (3) : REVIEW OF PREVIOUS RESEARCH ON THE BEHAVIOUR OF R.C OPEN CORNER JOINTS

3-1	Introduction	66
3-2	Causes of failure of open corner joints	67
3-3	Perfect joints fundamentals	67
3-4	Stress distribution according to the	
	theory of elasticity of open joints	68
3-5	Truss idealization of open corner joints	69
3-6	Experimental investigation of open corner joints	71
3-6-1	Nilsson tests	71
3-6-2	Swan tests	76
3-6-3	Tarek michael tests	76
3-7	Photo elastic analysis of open joints	77
3-8	Behaviour of open corner joints up to failure	78
3-8-1	Effect of the percentage of the main	
	reinforcement on the corner efficiency	79
3-8-2	Maximum percentage of main steel at which	80
	no diagonal crack occurs	
3-14	Conclusion of the previous work	81
* PAR	T II : EXPERIMENTAL WORK	
* CHAI	PTER (4): TEST SPECIMENS PREPARATION	
4-1	General	91
4-2	Construction of the specimens	91
4-3	Test setup	93
4-4	Material used	94
4-4-1	Reinforcing steel bars	94

4-4-	2 Concrete mix	94
4-4-	3 Steel fiber	94
4-5	Mixing , casting and curing	95
4-6	Measuring devices	96
4-7	Control specimens tests	97
* CH	APTER (5): EXPERIMENTAL RESULTS	
5-1	General	109
5-2	Observed behaviour	109
5-3	Deformations	116
5-3-1	Vertical deflections	116
5-3-2	? Horizontal displacements	117
5-4	Flexural strength	118
5-5	Tensile strain in main steel bars	120
5-6	Strain distribution	121
5-7	Crack pattern	122
5-7-1	Crack initiation	123
5-7-2	Crack width	123
5-7-3	Crack spacing	123
* PAR	T III : THEORETICAL ANALYSIS	
* CHA	PTER (6) : FINITE ELEMENT METHOD	
6-1	Introduction	164
6-2	Finite element analysis	165
6-3	Idealization of sections	171
6-4	Constitutive relations	171
6-4-1	For plain concrete	171

6-4-3 For steel fiber donorete	176
6-5 Crack formations	181
6-6 Main bars reinforcement	184
6-7 Bond between plain concrete , fiber	
concrete and steel bars	185
6-8 Computer program	187
* CHAPTER (7): THEORETICAL ANALYSIS RESULTS	
7-1 General	204
7-2 Observed behaviour	204
7-3 Deformations	206
7-3-1 Vertical deflections	206
7-3-2 Horizontal displacements	207
7-4 Stresses in main steel	207
7-5 Stress distribution	208
7-6 Flexural strength and cracking loads	208
* PART IV : COMPARISON AND CONCLUSION	
* CHAPTER (8) : COMPARISON BETWEEN THEORETICAL	-
AND EXPERIMENTAL RESULTS	
8-1 General	235
8-2 Ultimate loads	235
8-3 Cracking loads	235
8-4 Load deflection relationship	236

* CHAPTER (9): SUMMARY AND CONCLUSIONS

	References	245
9-3	Fields for future research	243
4-3	Conclusions	242
9 - 1	Summary	241

INTRODUCTION

GENERAL:

Most of the research in fibrous concrete has been concentrated on the material behaviour, however, the investigation of the actual behaviour of the fibrous concrete in the actual structural members is still rare.

The principle concern in this study is to investigate the behaviour and the ultimate flexural strength of the right angled open corner joints which are made of the fiber concrete in addition to steel bars . in the elastic and the cracked stages .

This investigation is carried out through changing : the percentage of the fiber by volume, the percentage of the main steel bars reinforcement, and the percentage of the cross reinforcement.

From exploratory research of the right angled open corner joints it has been shown that these kind of joints reflect its weakness in ultimate flexural strength as well as tendency to early cracking when subjected to bending moments. This phenomenon is due to the concentration of the tensile

stresses at the knee of the corner by about z=2.5 times the tensile stresses of the corresponding beam section. In many researches the draft recommendation results in having at least 50 % of main steel bars as cross reinforcement to counteract the tensile stress concentration at the knee of the open corner joints cast with conventional concrete.

The direct tensile strength and ductility of steel fiber concrete (S.F.C) are the characteristic that most clearly distinguish it from conventional concrete without fiber. Therefore, it is predicted to improve strength and deformation properties of these joints by using (S.F.C.) leading to a higher allowable design load. also minimize the percentage of the cross reinforcement, Which recommended by many researches for conventional concrete or eliminate it to avoid the congestion of the steel bars to have more simple detailing of the reinforcement at the knee of the corner leading to an easier casting and compacting processes.

OBJECTIVES:

The main objectives of this research are :

1- Studying the effect of adding three different percentages of steel fibers, (0.5~% , 1.0~% , and 1.5~% by volume), on the behaviour of the right angled open corner joints