


### Essay



614.419 A. A. Submitted for partial fulfillment of Master Degree of **Ophthalmology** 

Presented by

### Ahmed Abd El-Hadi Sadek Mohamed

M.B., B.Ch. Ain Shams University

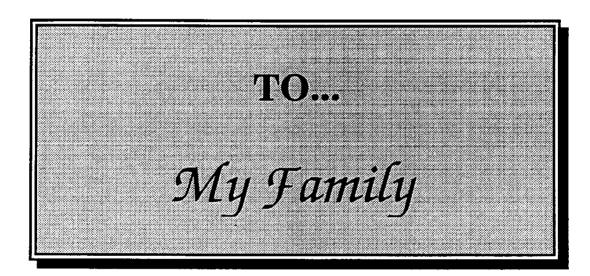
47000

Supervised by

### Prof. Dr. Amin Gad El Rab Atta

Prof. of Ophthalmology Ain Shams University

### Dr. Mervat Salah Mohamed Murad


Assistant Prof. of Ophthalmology
Ain Shams University

Faculty of Medicine Ain Shams University Cairo, 1995 بسم الله الرحين الرحيم

(وقل رب زدنی علماً)

'صدق الله العظيم' 'سورة طه آيه رقم (١١٤)





## Acknowledgment

I wish to express my sincere gratitude and indebtedness to Prof. Dr. Amin Gad El Rab, Prof. of Ophthalmology, Ain Shams University, for his valuable help, constant support and continuous encouragement all through this work.

I am greatly indebted to Dr. Mervat Salah, Assis.
Prof. of Ophthalmology, Ain Shams University, for her
precious guidance, valuable suggestions and continuous
encouragement.

Finally I would like to thank every member in the Ophthalmology Department, Ain Shams University especially Prof. Dr. Amira Mounir, for her continueous great help.

Ahmed A. Sadek

### **CONTENTS**

|   |                                              | Page         |
|---|----------------------------------------------|--------------|
| • | Introduction                                 | 1            |
| • | Anatomy of the cornea                        | 3            |
| • | History of keratotomies                      | 11           |
| • | Pathophysiology of the cornea                | 17           |
| • | Cornea topography                            | 35           |
| • | Astigmatic keratotomies (general principles) | 53           |
| • | Astigmatic keratotomy for idiopathic         |              |
|   | astigmatism                                  | 64           |
| • | Astigmatic keratotomy for post-operative     |              |
|   | astigmatism                                  | 90           |
| • | Variables that determine the effect of       |              |
|   | astigmatic keratotomy                        | 107          |
| • | Complications of keratotomies                | 112          |
| • | Photorefractive keratectomy for astigmatism  | 154          |
| • | Summary                                      | 165          |
| • | References                                   | l <b>6</b> 8 |
| • | Arabic Summary                               |              |

### LIST OF FIGURES

| Fig. No. | Title                                                      | Page       |
|----------|------------------------------------------------------------|------------|
| 1        | Keratotomy wound contains an epithelial plug               | 29         |
| 2        | Keratotomy wound after successful period of healing with   |            |
|          | slight epithelial plug                                     | 29         |
| 3        | Human cornea 43 months after keratotomy showing no         |            |
|          | epithelial plug, healing of the stroma and the epithelium  | 30         |
| 4        | Human cornea after successful keratotomy showing no        |            |
|          | epithelial plug and no increased cellularity               | 30         |
| 5        | Photokeratoscope projects lighted placido disk-like target |            |
|          | onto patient's cornea                                      | 37         |
| 6        | Video-photokeratoscope                                     | 37         |
| 7        | Graphic representation of computer-analyzed keratographs   | 41         |
|          | from normal cornea:                                        |            |
| 8        | Normalized scale. and absolute scale                       | 43         |
| 9        | The arrangment of colors in color-coded topography         | 44         |
| 10       | Eye sys corneal analysis system                            | 47         |
| 11       | Color coded topographic maps of the                        | 50         |
| 12       | The five patterns of normal corneal topography             | <b>5</b> 1 |
| 13       | Rounded clear zone marker                                  | 56         |
| 14       | Fixation instrument double pronged forceps with 13-mm      |            |
|          | spread                                                     | 56         |
| 15       | Axis marker and the protractor                             | 58         |
| 16       | Astigmatic marker for trapezoidal pattern                  | 58         |
| 17       | T-marker                                                   | 59         |
| 18       | L-marker                                                   | 59         |
| 19       | Diamond knife showing the knife blade footblate and handle |            |
|          | with a micrometer                                          | 62         |
| 20       | Gauge block                                                | 62         |
| 21       | Marking the center of the optical clear zone               | 74         |
| 22       | Marking the oval clear zone                                | 74         |
| 23       | Intraoperative measurement of the corneal thickness        | 77         |

| 24 | Fixation of the globe with Kremer fixation forceps           | 77         |
|----|--------------------------------------------------------------|------------|
| 25 | Transverse incisions perpendicular to the steep meridian     | 78         |
| 26 | Combined transverse and radial or semiradial.                | 80         |
| 27 | Intersecting incisions                                       | 82         |
| 28 | Trapezoidal pattern                                          | 85         |
| 29 | Grouped radial and oval clear zone.                          | 87         |
| 30 | Corneal topography contour map and keratoscope               |            |
|    | photographs. Showing (A) Postkeratoplasty astigmatism and    |            |
|    | (B) After arcuate relaxing incision.                         | 100        |
| 31 | Corneal topography contour map showing (A)                   |            |
|    | Postkeratoplasty symmetric astigmatism and (B) Symmetric     |            |
|    | relaxing incisions                                           | 103        |
| 32 | Microperforation of the cornea                               | 117        |
| 33 | Macroperforation with which needs 10/0 stiches               | 117        |
| 34 | Decentered clear zone                                        | 120        |
| 35 | Incisions across the visual axis                             | 120        |
| 36 | Incorrect axis of incisions                                  | 123        |
| 37 | Curvilinear incisions                                        | 123        |
| 38 | Central epithelial defects                                   | 125        |
| 39 | Veiling glare                                                | 130        |
| 40 | Bacterial keratitis                                          | 133        |
| 41 | A central stellate iron line                                 | 135        |
| 42 | Epithelial basement membrane changes                         | 135        |
| 43 | Hypertraphic scar                                            | 138        |
| 44 | Vascularization of the incision scar                         | 138        |
| 45 | Epithelial inclusions                                        | <b>141</b> |
| 46 | Epithelial ingrowth                                          | <b>141</b> |
| 47 | Cataract following keratotomy                                | 144        |
| 48 | Traumatic rupture of keratotomy scar with iris incarceration | 144        |
| 49 | Severe form of traumatic rupture of the globe                | 146        |
| 50 | Severe iridocyclitis following refractive keratotomy         | 148        |
| 51 | Photoablation in Excimer Laser.                              | 155        |
| 52 | Plume from 193-nm excimer laser                              | 156        |

| 53 | Mask design for the correction of astigmatism using          |     |
|----|--------------------------------------------------------------|-----|
|    | Holmium laser                                                | 164 |
| 54 | The treatment pattern for correction of different astigmatic |     |
|    | errors with Holmium laser                                    | 164 |

# INTRODUCTION

### INTRODUCTION

Visually significant astigmatism requiring treatment may occur in various clinical situations e.g. dystrophic and degenerative disorders of the cornea, postkeratoplasty patient, post-cataract surgery patient, and after trauma (Agapitos, and Lindstrom, 1992).

Naturally occurring astigmatism is quite common with up to 95% of eyes having some detectable astigmatic refractive errors. The incidence of clinically significant astigmatism reported varies between 7.5% and 75%. Between 3% and 15% of the general population may have an astigmatic refractive error of greater than 2.0D. (Duke-Elder and Abrams, 1970).

Post-operative astigmatism (post-cataract, post-keratoplasty, and post-refractive surgery) forms one of the major problems in visual rehabilitation for those patients. The incidence of post-operative astigmatism greater than 2.0D is approximately 25% to 30% (Jampel, et al., 1986) and (Axt, 1987).

The major symptoms of astigmatism is decreased uncorrected visual acuity and distortion from meridional magnification which is rarely present in the uncorrected

astigmatism, and more significant with spectacle correction. In refractive errors such as simple myopia and simple hyperopia, patients are able to see clearly to some degree at near and at distance, respectively. In contrast, patinets with compound astigmatism may not see objects in clear focus at any distance (Agapitos et al., 1989).

Astigmatic keratotomies are referring to operations on the cornea which are intended to alter the refractive state of the eye (flatten the steep meridian and steepen the unincised meridian 90° away) (Bores et al., 1993).

# ANATOMY OF THE CORNEA

### ANATOMY OF THE CORNEA

### Macroscopically:

The cornea forms the transparent anterior one-sixth of the eye ball. It is the main structure responsible for the refraction of light entering the eye. It is responsible for 2/3 of total refraction of the eye in non-accommodative state (Snell and Lemp, 1989).

Seen from the front, the cornea is convex and somewhat elliptical in shape. The approximate measurements are about 12mm vertically but about 11mm horizontally. Posteriorly the cornea is concave and circular, measuring about 11.5mm in diameter. The radius of curvature of the anterior surface of the cornea is about 7.8mm; that of the postrior surface, is 6.5mm. However, it should be pointed out that it is frequently more curved in the vertical than in the horizontal planes (astigmatism with the rule) (Warwick, 1976).

#### Structure of the cornea:

Microscopically, the cornea consists of five layers from without inwards. The epithelium, the Bowman's membrane, the substantia propria, the Descemet's membrane, and the endothelium.

### A. Corneal epithelium:

The corneal epithelium is a five-to-seven layer (30 to 50µm thick) stratified squamous epithelium non-keratinized that is organized in a more orderly fashion than similar epithelia elsewhere in the body, a prerequisite for the formation of a smooth transparent optical surface (Waring, 1992).

The epithelium contains three morphologic types of cells - a single layer of columnar basal cells, standing in a palisade like manner, in perfect alignment. They are responsible for mitotic activity. Each has a slightly oval nucleus whose long axis is that of the cell and placed near the head of the cell (Kenyon, 1987).

These basal cells accumulate iron in disorders that produce depression in the corneal surface. This iron forms the stellate iron line seen in the vast majority of cases after keratotomy. Also melanocytes are present within the epithelium which is responsible for striate melanosis seen in keratotomy incisions (Steinberg, et al., 1984).

The middle zone of cells in the corneal epithelium is the wing cells or umbrella cells, in which nuclei are oval or rounded