STUDIES RELATED TO THE KINETICS OF SOLVENT EXTRACTION OF URANIUM

A Thesis

Submitted by

NADIA MOHAMED ABD-EL-RAHMAN SEDA

(M.Sc. Chemistry)

546.431 10.11

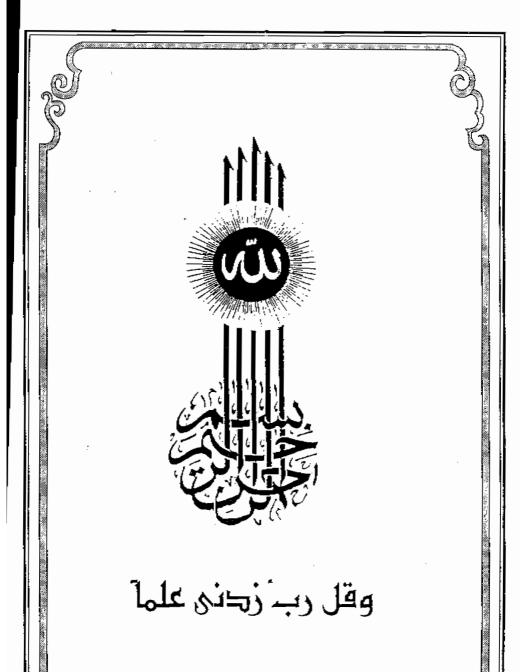
Hot Laboratories Centre Atomic Energy Authority

For he degree of Doctor of Philosophy (Chemistry)

)

To Chemistry Department Faculty of Science Ain Shams University

57423


Thesis Advisors

Prof. Dr. H. F. Aty Prof. of Nuclear Chemistry Chairman of Atomic Energy Authority

Prof. Dr. S. M. Khalifa Prof. of Radioinorganic Chemistry Head of Waste Management Division, Hot Laboratories Centre, Atomic Energy Authority Prof. Dr. S. S. Abd El-Rehim Prof. of Analytical and Inorganic Chemistry, Faculty of Science, Ain Shams University

Dr. J. A. Daoud
Ass. Prof. of Radiochemistry
Hot Laboratories Centre,
Atomic Energy Authority

1997

Name: Nadia Mohamed Abd-El-Rahman Seda

"Studies Related to the Kinetics of Solvent Extraction of Uranium"

Doctor of philosophy of Science (Chemistry)

Thesis Advisors

- 1- Prof.Dr. H. F. Aly
- 2- Prof.Dr. S. S. Abd El-Rehim
- 3- Prof.Dr. S. M. Khalifa /
- 4- Dr. J. A. Daoud

Approved

and salet

Jacquelline A. David

Prof. Dr. A. F. Fahmy
A - F. M. Fahmy
Head of Chemistry Department,
Faculty of Science,
Ain Shams University

To

My husband, my family, my two sons

CONTENT

	Page
Acknowledgement	
List of Figures	
List of Tables	
List of Abbreviations	
Abstract	
	Page
I.INTRODUCTION	
1.1.General	1
1.1.1. Kinetics of Chemical Reactions 1.1.2. Kinetics and Mechanism of Solvent	2
Extraction	2
1.1.2.1. Diffusional regime	4
1.1.2.2. Kinetic regime	5
a- Reactions in the bulk phases	5
b- Reactions at the interface	6
1.1.2.3. Mixed diffusional-kinetic regime	
Criteria used to identify the extraction	
regime	10
1.1.3. The Rate of a Chemical Reaction	10
1.2. Kinetics of Uranium in the Different Systems	12
1.3. Application in Reprocessing	17
1.4. Extraction Kinetic Techniques	22
1.4.1. Highly Stirred Vessels	21
1.4.2. Constant interfacial-Area-Stirred Cells	22
1.4.3. The Rotating Diffusion Cell	23
1.4.4. Single Drop Techniques	23
1.4.5. Short-time Phase Contacting Method	23
1.5. Literature Survey	24

2. EXPERIMENTAL

2.1. Chemicals and Reagents	31
2.2. Instrumentation	31
2.2.1. General	31
2.2.2. UV-Visible Spectrum Measurements	31
2.2.3. Lewis cell	31
2.3. Preparation of Main Working Solutions	34
2.3.1. Aqueous Uranium Solutions	34
2.3.2. Determination of Uranium	37
2.3.2. Organic Solutions	37
2.3.2.1. Tri-n-butylphosphate	37
2.4. General Procedure	37
2.4.1. Equilibrium Investigations	38
2.4.2. Kinetic Investigations	38
 RESULTS AND DISCUSSION Extraction of U(VI) by TBP in Kerosene from 	
Nitric Acid Medium	40
3.1.1. Equilibrium Studies	40
3.1.2. Kinetic Studies	42
3.1.2.1. Effect of stirring speed	42
3.1.2.2. Effect of temperature	42
3.1.2.3, Effect of specific interfacial	
area (a)	50
3.1.2.4. Effect of interfacial tension	53
3.1.2.4. Effect of interfacial tension 3.1.2.5. Effect of U(VI) concentration	53 54
3.1.2.5. Effect of U(VI) concentration	54
3.1.2.5. Effect of U(VI) concentration 3.1.2.6. Effect of TBP concentration	54 54
3.1.2.5. Effect of U(VI) concentration 3.1.2.6. Effect of TBP concentration 3.1.2.7. Effect of nitric acid concentration	54 54 60
3.1.2.5. Effect of U(VI) concentration 3.1.2.6. Effect of TBP concentration 3.1.2.7. Effect of nitric acid concentration 3.1.2.8. Effect of hydrogen ion concentration	54 54 60

3.1.3. Effect of selected fission products on k	
of U(VI).	74
3.1.3.1. Effect of U(IV) concentration	74
3.1.3.2. Effect of Zr(IV) concentration	77
3.1.3.3. Effect of Ce(IV) concentration	77
3.1.3.4. Effect of Mo(VI) concentration	85
3.1.3.5. Effect of U(IV), Zr(IV), Ce(IV)	
and Mo(VI) mixture	85
3.1.3.6. Effect of reducing agent	85
3.1.3.7. Effect of stabilizing agent	90
3.2. Extraction of tetravalent uranium	95
3.2.1. Extraction of U(IV) by TBP in Kerosene	
from Nitric Acid Medium	95
3.2.1.1. Equilibrium studies	95
3.2.1.2. Kinetic studies	95
3.2.1.2.1. Effect of stirring speed	97
3.2.1.2.2. Effect of temperature	97
3.2.1.2.3. Effect of specific interfacial	
area (a)	104
3.2.1.2.4. Effect of interfacial tension	104
3.2.1.2.5. Effect of U(IV) concentration	107
3.2.1.2.6. Effect of TBP concentration	107
3.2.1.2.7. Effect of nitric acid concentration	113
3.2.1.2.8. Effect of hydrogen ion concentration	113
3.2.1.2.9. Effect of nitrate concentration	121
3.2.1.2.10. Extraction mechanism	126
3.2.2. Extraction of U(IV) by Trilaurylamine (TLA)	128
3.2.2.1. Equilibrium studies	128
3.2.2.2. Kinetic studies	130
3.2.2.2.1. Effect of stirring speed	130
3.2.2.2. Effect of temperature	130

3.2.2.2.3. Effect of specific interfa	acial
area (a)	137
3.2.2.2.4. Effect of interfacial tens	sion 137
3.2.2.2.5. Effect of U(IV) concentrate	ion 140
3.2.2.2.6. Effect of TLA concentration	on 140
3.2.2.2.7. Effect of nitric acid cond	centration 146
3.2.2.2.8. Effect of hydrogen ion con	ncentration 146
3.2.2.2.9. Effect of nitrate concentr	cation 154
3.2.2.2.10. Extraction mechanism	154
GENERAL CONCLUSION	159
REFERENCES	162
SUMMARY	176
ARABIC SUMMARY	

ACKNOWLEDGEMENT

I am deeply thankful to Allah, by the grace of whom, the progress and sucess of this work was possible.

I would like to express my deep gratitude and appreciation to the thesis comittee members professors:

Prof. Dr. H. F. Aly, Prof. of Nuclear Chemistry, and Chairman of Aomic Energy Authority (A.E.A) for continuous supervision, suggesting the topic of study, plan of work and guidance throughout the whole investigations.

Prof. Dr. S. S. Abd El-Rehim, Prof. of Analytical and Inorganic Chemistry, Faculty of Science, Ain Shams University for sponsoring, continuous supervision and help during the scope of this work.

Prof.Dr. S. M. Khalifa, Prof. of Radioinorganic Chemistry, Head of Radioactive Waste Management Division, Hot Labs. Centre, A.E.A. for his continuous supervision, his guidance and careful review of all the manuscript is highly appreciated.

Dr. J.A.Daoud, Ass. Prof. of Radiochemistry, Hot Labs. Centre, A.E.A. for unlimited help and supervision of all experimental work and discussions presented in thesis. Her careful review of the manuscript is highly appreciated.

Thanks also to all the staff members, and my colleagues of the Hot Labs. Centre, A.E.A. for thier fine sympathy.

List OF FIGURES

Figure	e No	Page
1	Flow diagram for the Purex process.	20
2	The Used Lewis cell.	33
3	UV-Spectrum of U(VI)	
	a) before reduction.	
	b) after reduction to U(IV).	35
4	Effect of time on the stability of U(IV).	36
5	Effect of TBP concentration in kerosene	
	on the extraction, at equilibrium, of U(VI)	
	from nitrate medium.	41
6	First order plots for the extraction of U(VI)	
	by TBP in kerosene from nitrate medium at	
	different stirring speeds.	43
7	Effect of stirring speed on the rate of	
	extraction of U(VI) by TBP in kerosene	
	from nitrate medium.	45
8	First order plots for the extraction of U(VI)	
	by TBP in kerosene from nitrate medium at	
	different temperatures.	47
9	Effect of temperature on the rate of extraction	
	of U(VI) by TBP in kerosene from nitrate	
	medium.	49
10	Effect of specific interfacial area on the	
	reaction rate constant of U(VI) using TBP	
	kerosene from nitrate medium.	51

11	Effect of TBP concentrationin kerosene on the interfacial tension at the 3M nitric acid - (TBP+ kerosene) interface.	53
12	First order plots for the extraction of U(VI) by TBP in kerosene from nitrate medium at different initial U(VI) concentration.	55
13	Effect of U(VI) concentration on its rate of extraction by TBP in kerosene from nitrate medium.	57
14	First order plots for the extraction of U(VI) from nitrate medium by different TBP concentrations in kerosene.	5 8
15	Effect of TBP concentration in kerosene on the rate of extraction of U(VI) from nitrate medium.	61
16	First order plots for the extraction of U(VI) by TBP in kerosene from different nitric acid media.	62
17	Effect of nitric acid concentration on the rate of extraction of U(VI) by TBF in kerosene.	64
18	First order plots for the extraction of U(VI) by TBP in kerosene from nitrate medium of different hydrogen ion concentrations.	65
19	Effect of hydrogen ion concentration on the rate of extrction of U(VI) by	

67

TBP in kerosene from nitrate medium.

20	First order plots for the extraction of U(VI) by TBP in kerosene from different	
	nitrate ion concentrations.	69
21	Effect of nitrate ion concentration on	
	the rate of extraction of U(VI) by TBP	
	in kerosene.	71
22	First order plots for the extraction of	
	U(VI) in presence of different U(IV)	
	concentrations from nitrate medium by	
	TBP in kerosene.	75
23	Effect of U(IV) concetration on the	
	rate of extraction of U(VI) by TBP	
	in kerosene from nitrate medium.	78
24	First order plots for the extraction of	
	U(VI) in presence of different %r(IV)	
	concentrations from nitrate medium	
	by TBP in kerosene.	79
25	Effect of Zr(IV) concentration on the	
	rate of extraction of U(VI) by TBP in	
	kerosene from nitrate medium.	81
26	First order plots for the extraction of	
	U(VI) in presence of different Ce(IV)	
	concentrations from nitrate medium	
	by TBP in kerosene.	82
27	Effect of Ce(IV) concentration on the	
	rate of extraction of U(VI) by TBP	
	kerosene from nitrate medium.	84

First order plots for the extraction of

28

	U(VI) in presence of different Mo(VI) concentrations from nitrate medium	
	by TBP in kerosene.	86
29	Effect of Mo(VI) concentration on the	
	rate of extraction of U(VI) by TBP	
	in kerosene from nitrate medium.	88
30	Effect of U(IV), Zr(IV), Ce(IV) and Mo(VI)	
	mixture on the rate of extraction of U(VI)	
	by TBP in kerosene from nitrate medium.	89
31	First order plots for the extraction of	
	U(VI) by TBP in kerosene from simulated	
	solution containing lg/l Zr(IV), 0.75g/l,	
	Ce(IV) and lg/l Mo(VI) in nitrate medium	
	at different hydroxyamine hydrochloride	
	(HA HCl) concentrations.	91
32	First order plots for the extraction of	
	U(VI) by TBP in kerosene from simulated	
	solution containing 1g/l Zr(IV), 0.75g/l,	
	Ce(IV) and lg/l Mo(VI) in nitrate medium	
	at different sulphamic acid concentrations.	93
33	Effect of TBP concentration in kerosene	
	on the extraction ,atequilibrium,of U(IV)	
	from nitrate medium.	96
34	First order plots for the extraction of	
	U(VI) by TBP in kerosene from nitrate	
	medium at different stirring speeds.	98
35	Effect of stirring speed on the rate of	
	extraction of U(IV) by TBP in kerosene	
	from nitrate medium.	100

36	First order plots for the extraction of	
	U(IV) by TBP in kerosene from nitrate	1.01
	medium at different temperatures.	101
37	Effect of temperature on the rate of	
	extraction of U(IV) by TBP in kerosene	
	from nitrate medium.	103
38	Effect of specific interfacial area (a)	
	on the reaction rate constant of U(IV)	
	using TBP in kerosene fom nitrate medium.	106
39	Effect of TBP concentration kerosene on	
	the interfacial tension at the 3M nitric	
	acid - (TBP+ kerosene) interface.	108
40	First order polts for the extraction of	
	U(IV) by TBP in kerosene from nitrate	
	medium at different initial U(IV)	
	concentrations.	109
41	Effect of U(IV) concentration on its	
	rate of extraction by TBP in kerosene	
	from nitrate medium.	111
42	First order plots for the extraction of	
	U(IV) by different concentrations of TBP	
	in kerosene from nitrate medium.	112
43	Effect of TBP concentration in kerosene	
	on the rate of extraction of U(IV)	
	from nitrate medium.	115
44	First order plots for the extraction of	
	U(IV) by TBP in kerosene from different	
	concentrations of nitrate medium.	116