STABILITY OF ECCENTRICALLY LOADED SLENDER R.C. COLUMNS

Thesis

Submitted in Partial Fulfilment for the requirements of the degree of MASTER of SCIENCE

in Civil Engineering (Structural Division)

BY

رشالت

Ashraf Essa Ahmed Morshed

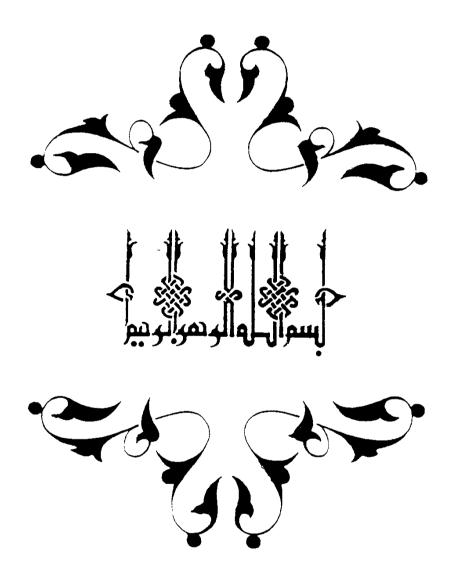
B.Sc. in Civil Engineering

624.172 A.E

supervisors

Prof.Dr. SHAKER AHMED EL-BEHAIRY

Professor of Reinforced concrete
Faculty of Engineering
Ain Shams University


Dr. ABD-ELSALAM AHMED MOKHTAR

Lecturer of Theory of Structures
Faculty of Engineering
Ain Shams University

FACULTY OF ENGINEERING
AIN SHAMS UNIVERSITY

1993

Examiners Committee

Name. Title & Affiliation

Signature

- 1- Prof.Dr.Ali Abd El-Rahman
 Prof.of Reinforced Concrete,
 Faculty of Engineering,
 Cairo University .
- 2- Prof.Dr.Mostafa Zidan
 Prof.of Structure Engineering,
 Faculty of Engineering,
 Ain Shams University.

2- Prof.Dr.Shaker Ahmed El-Behairy
Prof.of Reinforced Concrete
Faculty of Engineering

Ain Shams University

of ild

ET Bhil

STATEMENT

This dissertation is submitted to Ain Shams University for the degree of M.Sc. in Civil Engineering.

The work included in this thesis was carried out by the author in the Department of Civil Engineering, Ain Shams University,

No part of this thesis has been submitted for a degree or a qualification at any other University or Institution

Date :

Signature:

Name : Ashraf Essa Ahmed Morshed

Ashraf densked

ACKNOWLEGMENT

The writer wishes to express his sincere appreciation and deep gratitude to Dr. Shaker A. El-Behairy, Prof. of Reinforced concrete, Ain shams University, Cairo for his kind supervision and powerful support.

The writer is deeply indebted to Dr. Abd-Elsalam A. Mokhtar, lecturer of Structural Engineering, Ain Shams University for his constant supervision and planing, as well as for his encouragement throughout the completion of this thesis.

The writer is also grateful to his friends, and his sister.

SUMMARY

Abstract:

The nonlinear behavior of laterally and rotationally restrained reinforced concrete long columns is investigated, through evaluation of the column internal forces, deformations, and capacity. The restraints provided by the frame elements to the column are modeled by rotational and translational springs attached to the column ends. The analysis is performed with a developed computer program which takes into account both the geometrical and material non-linearity. A parametric study is performed for the effect of relative rotational restraint and relative lateral restraint, and confinement of concrete by the ties on the long column moments and strength. Also a comparison with (ACI 89-318) and Egyptian code (EGP-89) for the estimated moments and failure load is presented.

The thesis consists of six chapters and 2 appendixes

Chapter 1:

This chapter represents an introduction to the study.

Chapter 2:

Contains a literature review of the available published works concerning long column behavior.

Chapter 3:

This chapter discusses the various effects of long column behavior, with a brief representation of the various methods for taking the nonlinear behavior of the long columns effects into consideration in long column analysis, followed by description of the material modeling , system modeling , and the analysis method used in the study.

Chapter 4:

Represents the computer program for the nonlinear analysis of R.C. long column. This program is constructed to perform this study. It takes into account both the geometrical and material nonlinearity effects in the analysis.

Chapter 5:

Introduces the results of the parametric study performed for the effect of relative rotational restraint and relative lateral restraint, and confinement of concrete by the ties on the long column moments and strength .Also A comparison with the ACI(318-89), EGP(89) design rules for slender columns is presented in this chapter.

Chapter 6:

Provides the summary, conclusions of the study, and recommendations for future work.

TABLE OF CONTENTS

• 3	ment	i
Acknowledgm Table of Cor	tents	ii
CHAPTER 1 INTROD	UCTION	1
	General	1
1.1	Scope of the present study	3
1.2	Study organization	4
	ATURE REVIEW	6
2.1	Introduction	6
2.2	Pervious works concerning long R.C.	6
	columns	6
2.2.1	Long R.C. column behavior and capacity	O
2.2.1.1	E.O.Pfrang's work concerning braced	6
	columns	8
2.2.1.2	Wok done by Chang	
2.2.1.3	Pfrang work concerning columns in	10
	unbraced frames investigation	12
2.2.1.4	J.E.Breen& P.M. Ferguson investigation	18
2.2.1.5	F.N.Rad and Furlong work	19
2.2.1.6	Noel.D.Nathan work	
2.2.2	Researches related to codes of	

	practice	22
2.2.2.1	EI value for circular column	22
2.2.2.2	Mirsa modification of ACI formula for	
	EI	23
2.2.2.3	Chen's alternative EI expression	25
	Figures	28
-		
CHAPTER 3 NONLIN	EAR ANALYSIS OF LONG COLUMNS	29
3.1	Introduction	29
3.2	Secondary moments effects in frames	31
3.3	Effect of long column in reducing the	
	strength	32
3.4	Material nonlinearity	34
3.5	Different methods to account for P- δ	
	effects	40
3.5.1	ACI moment magnifier method	40
3.5.2	British Method CP8110	4.5
3.5.3	The Egyptian Code Method (EGP)	49
3.5.4	Mac-Gregor - Hage moment magnifier	
	method	51
3.5.5	Mac-Gregor - Hage simplified lateral	
	load method	54
3.5.6	Iterative Equivalent Lateral Load	
	Mathad	5.0

3.5.7	Negative Property Fictitious Member	
	Method	57
3.6	Method of Analysis	59
3.6.1	Introduction	59
3.6.2	Details of the analysis method	61
3.6.2.1	Basic assumptions	61
3.6.2.2	Model	62
3.6.2.2.1		62
5.0.2.2.2	a) Concrete in compression	62
	b) Concrete in Tension	67
	c) Steel Reinforcement	72
3.6.2.2.2		74
	.1 Beam column element	74
	.2 Restraining sprigs	75
	The analysis method	75
3.6.2.3	a secolucio	75
3.6.2.3.1		79
3.6.2.3.2	a a salintion	83
3.6.2.3.3		83
	.1 Column failure condition	84
3.6.2.3.3	3.2 Prediction of the type of failure	
3.6.2.3.4		86
	accurately	
	Figures	88

CHAPTER 4 COM	PUTER PROGRAM	106
4.1	Introduction	106
4.2	Flow Chart	107
4.3	Program KMT	107
4.3.1	Capabilities	107
4.3.2	Input	107
4.3.3	Output	109
4.3.4	Main program and subroutines	109
	Figures	117
CHAPTER 5 PAR	AMETRIC STUDY	120
5.1	Introduction	120
5.2	Verification of the computer results .	121
5.3	Loading patterns	122
5.4	Effect of The Relative Rotational	
	Restraint	124
5.4.1	Introduction	124
5.4.2	Effect of The Relative Rotational	
	Restraint for braced columns	126
5.4.2.1	PATTERN1	126
5.4.2.1	.1 Introduction	126
5.4.2.1	.2 results of the parametric study	127
5.4.2.1	.3 Comparison with EGP and ACI codes of	
	practice	129

5.4.2.2	PATTERN 4	135
5.4.2.2.1	Introduction	135
5.4.2.2.2	results of the parametric study	135
5.4.2.2.3	Comparison with EGP and ACI codes of	
	practice	137
5.4.3	Effect of The Relative Rotational	
	Restraint for laterally restrained	
	columns	139
5.4.3.1	PATTERN 2	139
5.4.3.1.1	Introduction	139
5.4.3.1.2	Results of the parametric study	139
5.4.3.1.3	Comparison with EGP and ACI codes of	
	practice	141
5.4.3.2	PATTERN 3	142
5.4.3.2.1	Introduction	142
5.4.3.2.2	Results of the parametric study	143
5.4.3.3	PATTERN 5	144
5.4.3.3.1	Introduction	144
5.4.3.3.2	Results of the parametric study	145
5.5	Effect of The Relative Lateral	
	Restraint	147
5.5.1	Introduction	147
5.5.2	PATTERN 2	148
5.5.2.1	Introduction	148
5.5.2.2	Results of the parametric study	148
5.5.2.3	Comparison with the EGP and ACI codes.	150

	5.5.3	PATTERN 3	151
	5.5.3.1	Introduction	151
	5.5.3.2	Results of the parametric study	151
	5.5.4	PATTERN 5	153
	5.5.4.1	Introduction	153
	5.5.4.2	Results of the parametric study	153
	5.6	Confinement effect	155
	5.6.1	Introduction	155
	5.6.2	Braced columns	156
	5.6.3	Unbraced columns	158
		Tables and Figures	160
CHAPT	rer 6 Conclu	SIONS	210
	6.1	Introduction	210
	6.2	Conclusions	211
	6.2.1	Laterally restrained column (Long	
		column in frames capable of attaining	
		relative joint displacements)	211
	6.2.2	Braced columns	212
	6.2.3	Confinement effect	213
	6.3	Recommendations for future work	214
	References		215
	Appendix A	List of Computer program	224
	Appendix B	Flexibility matrix	243
	Arabic summ	arv	246

CHAPTER 1 INTRODUCTION