

CHARACTERISTICS OF BOND BEHAVIOUR

A Thesis

Submitted to

The Faculty of Engineering, Ain Shams University
In The Partial Fulfillment of the Requirements for
The Degree of Doctor of Philosophy
In Civil Engineering
(Structural Division)

BY

M.Sc. 1988, Structural Division
Civil Engineering Dept.
Ain Shams University

SUPERVISORS

Prof. Dr. ABDEL-HADY H. HOSNY

Faculty of Engineering
Ain Shams University

62 h. 183 h.

Prof. Dr. GERT KONIG

Institut für Massivbau TH Darmstadt - Germany

Prof. Dr. Mohamed I. Soliman

Faculty of Engineering
Ain Shams University

41304

1992

CHARACTERISTICS OF BOND BEHAVIOUR

A Thesis

Submitted to

The Faculty of Engineering, Ain Shams University

In The Partial Fulfillment of the Requirements for

The Degree of Doctor of Philosophy

In Civil Engineering

(Structural Division)

ВY

OSAMA MOHAMED SAAD EL-NESR

M.Sc. 1988, Structural Division Civil Engineering Dept. Ain Shams University

SUPERVISORS

Prof. Dr. ABDEL-HADY H. HOSNY

Faculty of Engineering
Ain Shams University

Prof. Dr. GERT KÖNIG

Institut für Massivbau

TH Darmstadt - Germany

Prof. Dr. Mohamed I. Soliman

Faculty of Engineering
Ain Shams University

1992

TO MY WIFE

Examiners Committee

Name, Title & Affiliation

Signature

- 1. Prof.Dr. Abdel-Hady H. Hosny
 Faculty of Engineering
 Ain Shams University
- Prof.Dr. Gert König
 Institut für Massivbau
 Technische Hochschule Darmstadt, Germany
- 4. Prof.Dr. Shaker A. EL-Behairy Faculty of Engineering Ain Shams University
- 5. Prof.Dr. Mohamed I. Soliman Faculty of Engineering Ain Shams University

G. Zenty.

A.h.

Date: 13/04/1992

Statement

This disseration is submitted to Ain Shams University for the degree of Doctor of Philosophy in Civil Engineering (Structural Division).

The work included in this thesis was carried out by the auther in the Department of Civil Engineering, Ain Shams University - Cairo and Institut für Massivbau, Technische Hochschule Darmstadt - Germany from June 1988 to April 1992.

No part of this thesis has been submitted for a degree or a qualification at any other university or institution.

Date: 15/04/1992

Signature:

Name: Osama M. EL-Nesr

APPROVAL SHEET

CHARACTERISTICS OF BOND BEHAVIOUR

BY

OSAMA MOHAMED SAAD EL-NESR

Approved by

Prof. Dr. ABDEL-HADY H. HOSNY (Supervisor)

Professor of Reinforced Concrete Structures,

Faculty of Engineering,

Ain Shams University.

Prof. Dr. GERT KÖNIG

(Supervisor)

Professor of Reinforced Concrete Structures,

Institut für Massivbau

Technische Hochschule Darmstadt (Germany).

Prof. Dr. M.S. MIRZA

Professor of Reinforced Concrete Structures,

Faculty of Engineering,

McGil University (CANADA).

Prof. Dr. SHAKER AHMED EL-BEHAIRY

Professor of Reinforced Concrete Structures,

Faculty of Engineering,

Ain Shams University.

Prof. Dr. MOHAMED I. SOLIMAN

(Supervisor)

professor of Reinforced Concrete Structures,

Faculty of Engineering,

Ain Shams University.

SUPERVISORS

Prof. Dr. ABDEL-HADY H. HOSNY

Professor of Reinforced Concrete Structures,
Faculty of Engineering,
Ain Shams University.

Prof. Dr. GERT KÖNIG

Professor of Reinforced Concrete Structures,
Institut für Massivbau,
Technische Hochschule Darmstadt (Germany).

Prof. Dr. MOHAMED I. SOLIMAN

Professor of Reinforced Concrete Structures,
Faculty of Engineering,
Ain Shams University.

ACKNOWLEDGEMENTS

The author wishes to express his deepest gratitude to Prof. Dr. GERT KÖNIG, Professor of Reinforced Concrete Structures, Institut für Massivbau, Technische Hochschule Darmstadt, West Germany, for his constant supervision, planning, guidance, valuable suggestions, precise advice and constant encouragement during all phases of this research work.

The author wishes to express his sincere appreciation to Prof. Dr. ABDEL-HADY H. HOSNY, Professor of Reinforced Concrete Structures, Ain Shams University, for his kind supervision, guidance, constructive criticism and generous support during the course of this research work.

The author is also deeply indebted to Prof. Dr. MOHAMED

I. SOLIMAN, Professor of Reinforced Concrete Structures, Ain
Shams University, for his constant encouragement, helpful
suggestions, guidance and generous support during the course
of this research work.

The author is deeply grateful to Dr. K. LIBRAUM, Dr.-Ing., Institut für Massivbau, Technische Hochschule Darmstadt, for his generous help to achieve the experimental phase of this research work.

The author is also grateful to all members of the staff of the Reinforced Concrete Laboratory, Institut für Massivbau, Technische Hochschule Darmstadt, for their kind cooperation during the experimental phase of this research work.

The author is greatly indebted to the staff of the Computer Center, Institut für Massivbau, Technische Hochschule Darmstadt, for having placed their computer facilities at his disposal for carrying out the numerical part of this study.

Finally, the author dedicates this thesis to his wife, for her continuous encouragement, sacrifice and fruitful care.

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	iv
TABLE OF CONTENTS	vi
CHAPTER 1 INTRODUCTION.	
1.1 General view	1.1
1.2 Objectives of the present study	1.3
1.3 Contents of the present thesis	1.4
CHAPTER 2 LITERATURE REVIEW	
2.1 Bond Action	2.1
2.2 The Behaviour of the Bond between Steel and	
Concrete under Repeated Load	2.6
2.2.1 Bond tests with Long bars	2.7
2.2.2 Bond tests with short bars	2.8
2.3 Mechanism of Force Transfer from a Deformed	
Reinforcing Bar to Concrete under the action	
of cyclic load	2.12
2.4 Influence of the important parameters on	
bond resistance	2.16
2.4.1 The ribs of reinforcing bars	
2.4.2 Bar diameter	
2.4.3 Concrete quality	

2.4.4 Casting direction versus reinforcing
direction 2.20
2.4.5 State of Stress of the surrounding
concrete
2.4.6 Loading rate 2.22
CHARTER 3 CRACK FORMATION AND CRACK WIDTH
CHAPTER 3 CRACK FORMATION THE
3.1 Introduction 3.1
3.2 Crack formation around deformed bars 3.1
3.2.1 Cone-shape cracks, experimental 3.1
3.2.2 Cone-shape cracks, numerical
evidence 3.3
3.2.3 Tangential tensile stress distribution
causing longitudinal splitting 3.5
3.2.4 Relation of radial stresses and bond
stresses 3.7
3.2.5 Assumed tensile strength value and
degree of plastification 3.9
3.3 Bond stress distribution and crack width 3.10
3.3.1 Classical solution of the bond stress
distribution 3.10
3.3.2 Influence of crack location on the
local bond stress-slip relationship 3.12
3.3.3 Tacking account of different local bond
stress-slip relationship 3.16

3.3.4 Some other models 3.17
3.3.5 Relation between crack width at the bar
surface and crack width at the outer
surface of the concrete 3.18
CHAPTER 4 TEST PROGRAM
4.1 Introduction
4.2 Scope of the experimental test
4.3 Specimens and Materials 4.3
4.3.1 Reinforcement 4.3
4.3.1.1 Instrumented Bars 4.3
4.3.1.2 Location of the strain gauges 4.5
4.3.1.3 Calibration of the bar 4.5
4.3.2 Concrete 4.7
4.4 Mould for the test specimens
4.5 Mixing, Casting, Vibrating and Curing 4.9
4.6 Control specimens 4.10
4.7 Testing 4.11
4.7.1 Testing procedure of the test specimens 4.11
4.7.1.1 Instrumentation 4.11
4.7.1.2 Data Acquisition 4.13
4.7.1.3 Loading history 4.13
4.7.2 Testing procedure of the control
specimens
4.7.2.1 Direct tensile strength of the
concrete 4.15

4.7.2.2 The behaviour of concrete under
compression 4.16
CHAPTER 5 EXPERIMENTAL RESULTS
5.1 Introduction 5.1
5.2 Measured data 5.1
5.2.1 The bar strain 5.1
5.2.2 The bond stress 5.2
5.2.3 The slip 5.3
5.3 Results of the monotonic loading tests 5.5
5.3.1 General behaviour of the results 5.5
5.3.1.1 The average bond stress-slip
relationship 5.5
5.3.1.2 The local bond stress-slip
relationship 5.8
5.3.1.3 Steel stress variation 5.10
5.3.1.4 Applied load-radial stress
relationship 5.11
5.3.2 Influence of some parameters on the
bond resistance 5.13
5.3.2.1 The rib location 5.13
5.3.2.2 The concrete strength 5.14
5.3.2.3 The concrete stiffness surrounding
the reinforcing steel bar 5.15
5.4 Results of the cyclic loading tests 5.17
5.4.1 The load - slip relationship 5.17