AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

BEHAVIOUR OF TUNNELS IN SOME ECYPTIAN SOILS

BY ASHOUR CHAREEB ABD-EL-MAKSOUD SHALABY

A Thesis

Submitted in partial fulfillment for the requirements of the Degree of Doctor of Philosophy in Civil Engineering

Department of Structural Engineering

324 3.5. F-3

Supervised by

Prof. Dr. F. I. EL-KADI Prof. of Geotechnical Eng. Dept. of Structural Eng. Faculty of Engineering Ain Shams University Dr. F. M. EL-NAHHAS
Assoc. Prof. of Geotech. Eng.
Dept. of Structural Eng.
Faculty of Engineering
Ain Shams University

Cairo-1990

Examiners Committee

Name, Title & Affiliation

signature

- 1 Prof. Dr. J. M. Rotter
 Head of Department,
 Dept.of Civil Eng.and Build. Science
 University of Edinburgh, U.K.
- 2 Prof.Dr. M. E. Hammad
 Vice Dean for Post Graduate
 Studies & Research
 Faculty of Engineering,
 Ain Shams University
- 3 Prof. Dr. F. I. El-Kadi
 Prof. of Geotech. Eng.,
 Faculty of Engineering,
 Ain Shams University
- 4 Dr. F. M. El-Nahhas Assoc. Prof. of Geotech. Eng., Faculty of Engineering, Ain Shams University

Date: 1/11/1990...

John J.

X.....

FELNOS.

- iii -

STATEMENT

This dissertation is submitted to Ain Shams University for the degree of DOCTOR OF PHILOSOPHY in Civil Engineering.

The work included in this thesis was carried out by the author in the Department of Structural Engineering, Ain Shams University November 1984 to June 1990.

No part of this thesis has been submitted for a degree or a qualification at any other University or Institution.

Date : Signature : Name : Ashour Ghareeb Abd-El-Maksoud Shalaby - 1V ·

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Department of Structural Engineering

Abstract of the Ph.D. Thesis submitted by :

Ashour Ghareeb Abd El-MaksoudShalaby

Title of Thesis : "BEHAVIOUR OF TUNNELS IN SOME EGYPTIAN SOILS"

Supervisors : (1) Prof.Dr. Farouk El-Kadi

(2) Dr. Fathalla El-Nahhas

Rigistration Date:12/11/1984 Examination Date:31/10/1990

ABSTRACT

Tunneling through soil deposits invitably leads to downward ground movements above the tunnel crown. Structures existing within the zone of ground movements are affected and may be damaged due to these movements. Prediction of ground disturbance associated with tunneling was the aim of several research works. These studies concluded that such ground movements depend on tunneling technology and surface and subsurfce conditions.

The main tunnel of the East Bank Wastewater Project is the first tunnel which has advanced in Cairo using two

- v -

different techniques. Full face bentonite slurry boring machines and open face shields advancing under compressed air were used for the construction of different stretches of this tunnel.

The present research was performed on a test area which was chosen where 5.15m shielded tunnel was advanced through water bearing alluvial soil under compressed air. Surface and subsurfaces subsidences were measured using a set of surface settlement points and magnetic multipoint extensometers respectively. Two standpipe piezometers were installed for monitoring the changes of groundwater level in the vicinity of the tunnel. Field measurements of ground and groundwater responses to tunneling provided a realistic tool for quantitative evaluation of the in-situ performance of this tunnel.

It was illustrated that the field data compiled from this research can be used to predict the behaviour of future similar tunnels constructed under different areas of Cairo and other cities having similar subsurface conditions.

Finite element techniques were used to calculate surface and subsurface ground movements before and after the release of compressed air taking into consideration different nonlinear stress-strain models. Measured ground movements were compared with the calculated values and some guidelines on the use of numerical models for prediction of soil subsidences above tunnels are offered.

KEYWORDS: Tunneling, Ground subsidence, Open face shields, Compressed air, Surface settlement points, Magnetic multipoint extensometers, Standpipe piezometers, Finite element different nonlinear models.

ACKNOWLEDGEMENT

This research work was carried out under the direct supervision of Professor Dr. Farouk I. El-Kadi, Prof. of Geotech. Eng., Structural Eng. Dep., Faculty of Eng., Ain Shams Univeristy.

The author wishes to express his sincere gratitude to Prof. Dr. El-Kadi for his direct supervision, patience, guidance and invaluable advices.

The author do not know how to thank Dr. Fathalla M. El-Nahhas, Assoc. Prof. of Geotech. Eng., Structural Eng. Dep., Faculty of Eng., Ain Shams Univ., for his vigorous efforts to perform this research. He spent long hours in meetings to prepar the monitoring program and in valuable discussion during preparation of the final draft of the thesis.

Gratefull thanks go to the staff of Geotech. Eng., Structural Eng. Dep., Faculty of Eng., Ain Shams Univ. for their encouragements and valuable advices.

The auther also wishes to acknowledge the helpfull technical assistance provided by the technicians of the laboratory of Soil Mechanics and Foundations, Faculty of Eng., Ain Shams Univ. during the manufacture and installation of the instruments and recording the field measurements.

Deep thanks to Organization For Execution of the Greater Cairo Wastewater Project for the permission to do this research on the East Bank Greater Cairo Wastewater Project Tunnel.

Funding for installation of field instruments was gratefully provided by Ain Shams University.

Finally, I do not know how to thank my wife for her love, patience and encouragement.

Table of contents

Char	pter		Page		
1.	INTR	ODUCTION			
	1.1	General	1		
	1.2	The Greater Cairo Wastewater Project	4		
	1.3	Scope of the Thesis	7		
2.	REVIEW OF PREVIOUS STUDIES				
	2.1	Introduction	10		
	2.2	Loss of Ground	1.0		
		2.2.1 Loss of ground into tunnel face	11		
		2.2.2 Loss of ground over TBM	13		
		2.2.3 Loss of ground behind TBM tail	17		
	2.3	Prediction of Loss of Ground	18		
	2.4	Predition of Surface Subsidence	21		
		2.4.1 Semi-emprical methods	22		
		2.4.2 Finite element method	26		
		2.4.3 Model tests	31		
	2.5	Correlation Between Surface Subsidence and			
		Loss of Ground	32		
3.	SUMMARY OF TUNNELING TECHNIQUE IN SOFT GROUND				
	3.1	Introduction	38		
	3.2	Manual Excavation Methods	38		
		3.2.1 Heading and bench excavation	38		
		3.2.2 Shield tunneling	39		
	3.3	Tunnel-Boring Machines (TBM)	40		
		3.3.1 Full-face TBM	40		
		3.3.2 Part-face TBM	42		
	3.4	Modified TBM	45		

Cha	Chapter				
		3.4.1	Bentonite slurry TBM	. 46	
		3.4.2	Compressed air machine	. 49	
		3.4.3	Earth pressure balanced machines	. 49	
			3.4.3.1 Excavated earth pressure		
			balanced type	. 51	
			3.4.3.2 Earth pressure plus water		
			pressure balanced type	. 53	
			3.4.3.3 High density slurry type	. 53	
			3.4.3.4 Mud pressure type	. 55	
	3.5	Conven	tional Compressed Air Construction Method	. 55	
4.	GEOLOGY OF GREATER CAIRO				
	4.1	Genera	l Geology of Greater Cairo	. 59	
		4.1.1	Topography	. 59	
		4.1.2	Geological information of high land	. 59	
			4.1.2.1 Eastern border cliffs	. 59	
			4.1.2.2 Western border cliffs	. 61	
		4.1.3	Geological formation of the low land	62	
			4.1.3.1 Diluvial deposits	62	
			4.1.3.2 Alluvial deposits	63	
	4.2	Soil C	Condition at the Greater Cairo Wastewater		
		Tunnel	Area	63	
		4.2.1	First soil stratum	65	
		4.2.2	Second soil stratum	65	
		4.2.3	Third soil stratum	66	
		4.2.4	Fourth soil stratum	66	
		4.2.5	Fifth soil stratum	66	
	43	Soil	Condition at Test Area	67	

Cha	pter		Page		
5.	CONS	TRUCTION TECHNOLOGY AND MONITORING PROGRAM			
	5.1	Introduction	74		
	5.2	Construction Technology	75		
	5.3	Details of Instruments	80		
		5.3.1 Settlement point	80		
		5.3.2 Multipoint extensometer	83		
		5.3.2.1 Installation procedure	87		
		5.3.2.2 Measurement procedure	87		
		5.3.3 Piezometers	91		
	5.4	Layout of Test Sections	94		
		5.4.1 Test section I	96		
		5.4.2 Test section II	96		
		5.4.3 Test section III	99		
6.	FIELD MEASUREMENTS AND DISCUSSION				
	6.1	Introduction	102		
	6.2	Surface Soil Movements in Longitudinal Direction	102		
	6.3	Surface Soil Movements in Transverse Direction	109		
	6.4	4 Subsurface Soil Movements in Longitudinal			
		Direction	112		
	6.5	Variation of Soil Movements with Depth	123		
	6.6	Subsidence Contour Maps	126		
	6.7	Piezometeric Head	129		
7.	FINI	TE ELEMENT ANALYSIS			
	7.1	Introduction	133		
	7.2	Evaluation of Geotechnical Properties	134		
	7.3	Numerical Modelling	135		
		7.3.1 Modelling of tunnel construction	135		
		7 3 1 1 Gravity-turn-on approach	134		

- xii -

Chap	ter			Page
		7.3.1.2	Stress reversal approach	138
	7.3	.2 Finite el	lement meshs	141
	7.3	.3 Stress-st	train modelling	141
		7.3.3.1	Stress-strain model for	
			gravity-turn-on process	144
		7.3.3.2	Stress-strain model for	
			stress reversal process	144
	7.4 Resi	ults and Disc	cussion	145
	7.4	.l Gravity-t	turn-on process	146
		7.4.1.1	Surface settlement trough under	
			the presence of compressed air	146
		7.4.1.2	Subsurface settlement trough after	
			the release of compressed air	149
		7.4.1.3	Subsurface ground movements under	
			the presence of compressed air	151
		7.4.1.4	Subsurface ground movements after	
			the release of compressed air	153
	7.4	.2 Stress re	eversal process	154
		7.4.2.1	Surface ground movements under	
			the presence of compressed air	156
		7.4.2.2	Surface ground movements after	
			the release of compressed air	158
		7.4.2.3	Surface and subsurface ground	
			movements after the release	
			of compressed air	160
8.	SUMMARY,	CONCLUSIONS	AND RECOMMENDATIONS FOR FURTHER	
	STUDIES			
	8.1 Int	roduction		162

- xiii -

Chapter			Page
8.2	Summary		
	8.2.1	Surface ground movements	163
	8.2.2	Subsurface ground movements	164
	8.2.3	Piezometeric head	165
	8.2.4	Finite element analysis	166
	8.2.5	Comparison between measured and	
		calculated deformations	167
		8.2.5.1 Gravity-turn-on process	167
		8.2.5.2 Stress revesal process	169
8.3	Conclu	sions	170
8.4	Recomm	mendation for Further Studies	173
Referenc	es	***************************************	175

List of Figures

FIGUR	E	PAGE
1.1	Development of rapid transit systems	
	(after Girnau and Blennemann, 1989)	2
1.2	Main elements of the East Bank Wastewater Project	6
2.1	Ground movements about tunnels	12
2.2	Horizontal longitudinal soil movements in sand	
	(after Hansmire, 1975)	14
2.3	Horizontal longitudinal soil movements in stiff	
	clay (after El-Nahhas, 1980)	15
2.4	Comparison between calculated and measured	
	volume of loss of ground (after Peck, 1969)	20
2.5	Normal probability curve used for describing	
	subsidence profiles (after Peck et al, 1969)	23
2.6	Trough width, subsidence over tunnels in	
	different soils (after Peck, 1969)	24
2.7	Maximum surface settlement related to depth	
	and diameter for tunnels in stiff clay	
	(after Attewel and Farmer, 1975)	25
2.8	Distribution of stresses for three	
	different soil behaviours at $H/R = 2$	
	(after Hoyaux and Ladanyi, 1970)	27
2.9	Distribution of stresses for three	
	different soil behaviours at H/R = 18	
	(after Hoyaux and Ladanyi, 1970)	28