Ain Shams University Faculty of Engineering

Study of Retaining Walls With Shelf

 $\mathbf{B}\mathbf{y}$ Essam Shafik Mohamed

624, 164

Submitted in Partial Fulfillment for the Requirements of the Degree of Master of Science in Civil Engineering Department of Structural Engineering 500H

Supervised By

Prof. Dr. Fathalla M. El-Nahhas

Dr. Rawia R. El-Sakhawy

Prof. of Geotechnical Eng. Dept. of Structural Engl Faculty of Engineering Ain Shams University

Lecturer in Soil Mech. & Foundation Dept. General Organization for Housing, Building and Planning Research

1997

بسم الله الرحم الرحيم « ربنسا أتنسا مسن لدنسسك رحمة و هيئ لنا من أمرنا رشدآ » صحق الله العظيم

Examiners Committee

Tanek D. Muchel

FRIQE EIN

Name, Title & Affiliation

Signature

1. Prof. Dr. M. M. Abdel-Rahman MA Kal

Prof. of Geotechincal Eng.

Faculty of Engineering

Cairo University

2. Prof. Dr. T. A. Macky

Prof. of Geotechincal Eng.

Faculty of Engineering

Ain Shams University

3. Prof. Dr. F. M. El-Nahhas

Prof. of Geotechnical Eng.

Faculty of Engineering

Ain Shams University

Date: 30 /10 / 1993

STATEMENT

This dissertation is submitted to Ain Shams University for the degree of Master of Science in Civil Engineering.

The work included in the thesis was carried out by the author in the Department of Structural Engineering, Ain Shams University, from January 1992 to September 1993.

No part of this thesis has been submitted for a degree or a qualification at any other university or institution .

Date : 30/10/1/993

Signature : Essam shafik

Name : Essam Shafik Mohamed

Ain Shams University Faculty of Engineering

ACKNOWLEDGMENTS

My cordial and deepest thanks to the supervisors of this work:

- Prof. Dr. Fathalla Mohamed El-Nahhas
 Professor of Geotechincal Eng.,
 Ain Shams University
- Dr. Rawia Ragab El-Sakhawy
 Lecturer in Soil Mech. & Foundation Depart.
 General Organization for Housing, Building and Planning Research

Thanks to Staff and Technicians of Soil Mechanics laboratory in "GOHBPR"

Thanks to "GOHBPR"

Ain Shams University
Faculty of Engineering
Department of Structural Engineering

Abstract of the M.Sc. Thesis submitted by: Essam Shafik Mohamed

Title of Thesis: " Study of Retaining Walls With Shelf "

Supervisors:

(1) Prof. Dr. Fathalla M. El-Nahhas

(2) Dr. Rawia R. El-Sakhawy

Registration Date: 10/12/1990 Examination Date: 30/10/1993

Summary

The purpose of this research is to study the pressure distribution on unyielding retaining wall provided with shelf due to strip loading acting on the surface of sandy soil. To achieve this, models of retaining wall provided with pressure cells were made, placed in a tank and the sandy soil was spread behind the wall up to the top level of wall stem. The research investigated the effect of shelf breadth and position on the pressure distribution on the wall stem and the resulting lateral force under surface strip loading.

Results of Numerical solutions using finite element method were compared with results of the experimental work.

This research demonstrated that horizontal shelf fixed to retaining walls decreases the lateral force significantly. It was noticed that the decrease in this lateral force depends on the shelf breadth and position.

Keywords: Model Tests, Retaining Wall, Shelf, Strip Load
Pressure and Numerical Solution

TABLE OF CONTENTS

CHAPTER	Page
1. INTRODUCTION	
1.1 General	.1
1.2 Purpose of Research	1
1.3 Scope and Organization of Present Work	2
2. LITERATURE REVIEW	
2.1 General	4
2.2 Effect of Shelf on Distribution of Earth Pressure	5
2.3 Earth Pressure under no Lateral Movement	9
2.3.1 Earth pressure due to loading the backfill surface	12
2.3.2 Effect of soil density and method of densification	16
2.4 Review of Relevant Literature on Retaining Walls Models	19
2.4.1 Plane strain condition	21
2.4.2 Effect of side friction and model width	23
2.4.3 Effect of boundary deformation	24
2.5 Brief Historical Review of Pressure Measurement Devices	25
2.6 The Concept of Finite Element Analysis	26
3. EXPERIMENTAL WORK	
3.1 General	28
3.2 Experimental Program	28
3.3 Experimental Set-Up	31
3.3.1 The model retaining wall	31
3.3.2 The tank	35
3.3.3 Sand spreader	35
3.3.4 Loading system	37
3.4 Measurements and Measuring Devices	41
3.4.1 Pressure measurements	41
3.4.1.1 Basic feature of the required cell	
3.4.1.2 Design of the cell	43

CHAPTER	Page
3.4.1.3 Type of pressure cell	43
3.4.1.4 Calibration of the cell	48
3.4.1.5 Calibration under sand pressure	51
3.4.2 Wall deflection measuring system	51
3.5 Test Procedure	54
3.6 Properties of the Soil Medium	55
4. RESULTS AND DISCUSSION OF EXPERIMENTAL WORK	
4.1 General	57
4.2 Effect of the Incremental Load on the Resulting Pressure Distribution	· 5 7
4.2.1 Lateral pressure distribution on retaining wall	
without shelf	59
4.2.2 Lateral pressure distribution on retaining wall	
provided with shelf	66
4.2.2.1 Shelf at Position (I)	68
4.2.2.2 Shelf at Position (II)	68
4.2.2.3 Shelf at Position (III)	75
4.2.2.4 Shelf at Position (IV)	79
4.3 Effect of Shelf Breadth	79
4.3.1 Effect of shelf breadth on the pressure distribution	79
4.3.2 Effect of shelf breadth on pressure just above and	
below shelf	83
4.4 Effect of Shelf Breadth and Position on Lateral Force	92
5. NUMERICAL ANALYSIS OF RETAINING WALLS	
WITH A SHELF	
5.1 General	104
5.2 Finite Element Analysis	104
5.2.1 Linear analysis	105
5.2.2 Parametric study	
5.2.2.1 Boundary conditions	109

THAPTER PA	age
5.3 Comparison between Numerical Solution and Experimental	
Work Lateral Pressure Acting on Retaining Wall	109
5.3.1 Case of retaining wall without shelf	109
5.3.2 Case of retaining wall with shelf	
5.3.2.1 Shelf at Position (I)	111
5.3.2.2 Shelf at Position (II)	
5.3.2.3 Shelf at Position (III)	
5.3.2.4 Shelf at Position (IV)	
5.4 Lateral Force Comparsion	
5.4.1 Comparison between numerical solution and experimental	
work for upper and lower lateral force	1 2 7
5.4.2 Comparison between numerical solution and	121
experimental work for total lateral force	121
5.5 Earth Pressure Distribution	
5.6 Comments on Results of Numerical Analysis	
6. CONCLUSIONS & RECOMMENDATIONS	
6.1 Conclusions	
6.1.1 Retainig wall without shelf	
6.1.2 Retaining wall provided with shelf	143
6.1.2.1 Effect of shelf on the lateral pressure	143
6.1.2.2 Effect of shelf on the lateral force	143
6.1.3 Use of analytical and numerical solution	143
6.2 Recommendations for future work	144
REFERENCES	1 4 5

LIST OF FIGURES

ŀ	ig. no.		Page
	2.1	Full earth pressure diagram acting on retaining wall using a horizontal	
		shelf (after Schultze, 1967)	6
	2.2	Lateral pressure acting on retaining wall with shelf	
		(after Schultze, 1967)	7
	2.3	Idealization of earth pressure acting on retaining wall	
		with shelf (after Abdel-Kader, 1989)	8
	2.4	Effect of shelf on earth pressure force, case of $\gamma=1.4 \text{ t/m}^3$.	
		ϕ =36 , H=14 m , δ =0 (after Abdel-Kader, 1989)	10
	2.5	Stresses due to point load in semi-infinite mass - three	
		dimentional analysis (after Boussinesq, 1885)	14
	2.6	Lateral pressure in soil mass due to strip load	
		(after Teng, 1964)	15
	2.7	Stresses due to a vertical line load in plane state-of stresses	
		(after Das, 1983)	15
	2.8	Effect of compaction on earth pressure	
		(after Sowers et-al 1957)	18
	2.9	Proposed earth pressure distribution after compaction of backfill	
		(after Broms, 1971)	20
	2.10	Plane - strain condition	22
	3.1	Layout of the retaining wall model	29
	3.2	Details of retaining wall model	32
	3.3	Details of tank and wall supports	36
	3.4	Details of sand spreader	38
	3.5	Details of loading system	40
	3.6	Pressure cell structure	44
	3.7	Pressure cell retaining system	46
	3.8	Wall stem back face showing the position of pressure cell	47
	3.9	Pressure cell calibration chamber	49
	3.10	Typical calibration curves for cells	50
	3.11	Particle size distribution curve of the sand used	56
	4.1.a	Positions of strip load for first group of tests	58
		Positions of shelf	58

Fig. n	o.	Page
4.2	Pressure distribution on retaining wall without shelf	
	(ξ=0.166)	60
4.3.a	Pressure distribution on retaining wall without shelf	00
	(ξ=0.083)	. 61
4.3.b	Pressure distribution on retaining wall without shelf	
	(ξ=0.083)	. 63
4.4.a	Comparison between experimental work and some	
	theoretical solutions (q=10&20kN/m²)	·· 64
4.4.b	Comparison between experimental work and some	
	theoretical solutions (q=10&20kN/m²)	. 65
4.6	Pressure distribution on retaining wall with shelf	
47	$(\eta = 0.2, \lambda = 0.75)$. 69
4.7	Pressure distribution on retaining wall with shelf	
4.8	$(\eta=0.3,\lambda=0.75)$	• 70
4.0	Pressure distribution on retaining wall with shelf	
4.9	(η=0.4, λ=0.75) Pressure distribution on nationing mall mid- at the	· 71
2	Pressure distribution on retaining wall with shelf $(\eta=0.2,\lambda=0.50)$	
4.10	Pressure distribution on retaining wall with shelf	• 72
	$(\eta=0.3,\lambda=0.50)$	
4.11	Pressure distribution on retaining wall with shelf	· /3
	(η=0.4, λ=0.50)	74
4.12	Pressure distribution on retaining wall with shelf	74
	(η=0.2, λ=0.25)	.76
4.13	Pressure distribution on retaining wall with shelf	
	$(\eta=0.3, \lambda=0.25)$.77
4.14	Pressure distribution on retaining wall with shelf	
	$(\eta=0.4, \lambda=0.25)$	·78
4.15	Pressure distribution on retaining wall with shelf	
	$(\eta=0.2, \lambda=0.041)$	80
4.16	Pressure distribution on retaining wall with shelf	
4 10	$(\eta=0.3, \lambda=0.041)$	81
4.17	Pressure distribution on retaining wall with shelf	
	$(\eta=0.4, \lambda=0.041)$	0.2

Fig. n	0.	Page
4.18	Pressure distribution comparison, shelf at depth 0.45 m	
	$(\lambda = 0.75)$	0.4
4.19	Pressure distribution comparison, shelf at depth 0.30 m	. 04
	$(\lambda = 0.50)$. OE
4.20	Pressure distribution comparison, shelf at depth 0.15 m	. 65
	$(\lambda = 0.25) \dots$	86
4.21	Pressure distribution comparison, shelf at depth 0.025 m	
	$(\lambda = 0.041)$	87
4.22	Relation between shelf breadth and pressure above and	
	below it (λ=0.75)	88
4.23	Relation between shelf breadth and pressure above and	
	below it (λ=0.50)	89
4.24	Relation between shelf breadth and pressure above and	
455	below it (λ=0.25)	. 90
4.25	Relation between shelf breadth and pressure above and	
404	below it (λ=0.041)	. 91
4.26	Relation between shelf breadth and lateral force	
4.05	$(\lambda=0.75)$. 93
4.27	Relation between shelf breadth and lateral force	
4 20	$(\lambda=0.50)$	94
4.28	Relation between shelf breadth and lateral force	
4.29	(λ=0.25)	95
4.27	Relation between shelf breadth and lateral force	
4.30	Relation between shalf have let	96
4.31	Relation between shelf breadth and lateral force above shelf	97
4.32	Relation between shelf breadth and lateral force under shelf	98
4.33	Relation between shelf breadth and total lateral force	99
	$(\eta=0.2)$	
4.34	Relation between shelf position and lateral force	101
	$(\eta=0.3)$	
4.35	Relation between shelf position and lateral force	102
	$(\eta=0.4)$	
5.1.a	Finite element idealization for shelf Positions I II III	103

Fig. no		age
5.1.b	Finite element idealization for shelf position IV	. 100
5.2	Pressure distribution comparison, wall without shelf	100
	(ξ=0.083)	110
5.3	Pressure distribution comparison, wall with shelf	110
	$(\eta=0.2, \lambda=0.75)$	112
5.4	Pressure distribution comparison, wall with shelf	
	$(\eta=0.3, \lambda=0.75)$	113
5.5	Pressure distribution comparison, wall with shelf	
5.0	$(\eta=0.4, \lambda=0.75)$	114
5.6	Pressure distribution comparison, wall with shelf	
5.7	$(\eta=0.2,\lambda=0.50)$	117
3.1	Pressure distribution comparison, wall with shelf	
5.8	(η=0.3, λ=0.50)	118
0.0	Pressure distribution comparison, wall with shelf (η =0.4 , λ =0.50)	
5.9	Pressure distribution comparison, wall with shelf	119
	(η=0.2, λ=0.25)	
5.10	Pressure distribution comparison, wall with shelf	120
	$(\eta=0.3, \lambda=0.25)$	101
5.11	Pressure distribution comparison, wall with shelf	121
	(η=0.4 , λ=0.25)	122
5.12	Pressure distribution comparison, wall with shelf	122
	(η=0.2, λ=0.041)	124
	Pressure distribution comparison, wall with shelf	
	(η=0.3, λ=0.041)	125
5.14	Pressure distribution comparison, wall with shelf	
£ 15	$(\eta=0.4, \lambda=0.041)$	126
5.15	Upper and lower lateral force comparison, with shelf breadth	
5 16	(λ=0.75)	128
5.16	Upper and lower lateral force comparison, with shelf breadth	
5.17 1	(\lambda=0.50)	129
	Upper and lower lateral force comparison, with shelf breadth	
•	λ=0.25)	130

Fig. n	o.	age
5.18	Total lateral force comparison, with shelf breadth	
5.19	(λ=0.75) Total lateral force comparison, with shelf breadth	
5.20	(λ=0.50)	
5.21	(λ=0.25)	134
5.22	(λ=0.041) Earth pressure distribution on retaining wall with shelf	135
	(λ=0.75) Earth pressure distribution on retaining wall with shelf	137
	(λ=0.50) Earth pressure distribution on retaining wall with shelf	138
	(λ=0.25)	139
3.23	Earth pressure distribution on retaining wall with shelf (λ=0.041)	1.40