AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

EFFECT OF HORIZONTAL BEAMS AND TIES ON THE BEHAVIOUR OF ELEVATED TANKS USING FINITE ELEMENT TECHNIQUE

ВЧ

AHMED M. NAGIB EL-KARRANY B.SC.ENG.

A Thesis

Submitted In Partial Fulfillment Of The Requirements of The Degree Of Master Of Science In Structura, Engineering.

Supervised By

Prof. Dr.A.A. Korashy
Professor of Structural
Engineering
Ain Shams University

Prof. Dr. A. W Beshara
Professor Of Structural
Engineering
Ain Shams University

Dr. I. A. Moharam Lecturer Of Structural Engineering Ain Shams University

> Cairo Egypt 199.

TO MY PARENTS & MY WIFE

EXAMINERS COMMITTEE

Name, Title & Affiliation

Signature

- 4. Prof. Dr. Abdel-Raouf W. Beshara (supervisor) ... خرارن رئيد Professor of Structural Engineering. Faculty of Engineering Ain Shams University.

Date: 27/ 5/1992

STATEMENT

This thesis is submitted to Ain Shams University for the degree of Master of Science in structural Engineering.

The work included in this thesis was carried out by the author in the department of Structural Engineering Ain Shams University, from June 1983 to 1992.

No part of this thesis has been submitted for a degree or a qualification at any other University or Institute exept when due reference is made in the text of the thesis.

Date: 27-5-92

Signature:

Name: Ahmed M. Nagin EL-Karrany

EFFECT OF HORIZONTAL BEAMS AND TIES ON THE BEHAVIOUR OF ELEVATED TANKS USING FINITE ELEMENT TECHNIQUE

SUMMARY

This research is a study of the effect of top horizontal beams and ties on the stresses and internal forces in walls and floor of elevated tanks with variable aspect ratio using finite element technique. It takes into account the actual interactions between walls and floor. A trial is also made to find an approximate method for analysing elevated tanks keeping a reasonable accuracy degree.

The research is composed of six chapters.

CHAPTER DNE:-

This is an introduction and literature review for various existing methods of analysis for solving elevated tanks as follows:-

ar Analytical methods using direct solution of differential equation and energy principles.

b- Numerical methods such as finite difference and finite element techniques.

c- Analogy methods are made by using simple structural finite elements such as plane frame elements or space frame elements having equivalent stiffness of the actual structure.

CHAPTER TWO:-

It explains different finite elements used in the present analysis and the assessment of the accuracy.

it also gives a parametric study for the effect of top horizontal beams present over two or four sides on the internal forces in walls and floor of tanks with variable aspect ratio.

CHAPTER THREE:-

It is a parametric study to find the effect of the ties connecting mid span points of the long top beams. Top horizontal beams may be located over long sides only or over all sides. The tank aspect ratio is variable. Results are compared with the case of open tanks with free top edges. (i.e. without top beams)

CHAPTER FOUR:-

It is a study of the effect of covering the tanks on the internal forces. The same aspect ratios are considered as in chapters two and three again. Comparison is made with the open tank results.

CHAPTER FIVE:-

A trial is made to find an approximate and simple method for analysing the tank. Grillage elements are used to represent the bending stiffness of the plates (walls and floor) while the implane stiffness of the plates is represented by plane stress plate elements. The object of this method is to minimize the computing time and capacity.

CHAPTER SIX:-

It gives the conclusions of the research results and their importance to the designer. It also gives the recommendations and suggestions for future works.

Acknowledgement

The researcher wishes to express his deepest gratitude to prof. Dr. Ahmed A. Korashy, professor of structural Engineering, Ain Shams University, for his generous support and helpful supervision during all phases of this research.

The researcher also would like to express his sincere appreciation to Prof. Dr. Abd-El Raouf W. Beshara, professor of structural Engineering, Ain Shams University, for his valuable proposals, encouragement and precise advice during his direct and continuous supervision throughout the work.

The researcher is greateful to Dr. Ibrahim A. Moharam, Lectuerer of structural Engineering, Ain Shams University for his interest, guidance and help in the research work.

Contents

Summary		i-i i
Acknowledgement		iii
Contents		iv-vii
List of figueres.		viii-i×
List of Tables		×
List of notations	5	×i
CHAPTER 1:	Introduction and literature review	1
1.1	Introduction	1
1.2	Literature review	2
1.2.1	General	2
1.2.2	Analytical methods	2
1.2.3	Numerical methods	4
1.2.4	Analogy methods	6
1.3	Aims of the present work	8
CHAPTER 2:	Behaviour of elevated rectangular tanks	with
	top horizontal beams	9
2.1	Introduction	9
2.2	The finite element program	9
2.2.1	The program chosen	9
2.2.2	Methods of comparison	9
2.3	Studied case & finite element model	10
2.3.1	Studied cases	10
2.3.2	Finite element modelling	11
2-4	Representation of results	12
2.5	Discussion of results	12
2.5.1	Bending moment about X and Y axes	12
2.5.1.1	Bending moment of the long wall	
	bottom at midspan $(M_{\kappa}(a))$	12
2.5.1.2	Bending moment of the short wall	
	bottom at midspan (M _y (c))	13
2.5.1.3	Bending moment of floor middle	
	point about x axis $(M_{\kappa}(f))$	14
2514	Reading moment of floor middle	

	point about Y axis (My(f)	14
2.5.2	Bending moment about Z axis	15
2.5.2.1	Bending moment at wall junction	
	line top $(M_{\pi}(e))$	15
2.5.2.2	Bending moment of the long wall	
	top edge at midspan $(M_x(b))$	15
2.5.2.3	Bending moment of the short wall	
	top edge at midspan $(M_z(d))$	16
2.5.3	Inplane forces in Y-direction (N_y)	16
2.5.3.1	Inplane force in long wall	16
2.5.3.2	Inplane forces in floor	17
2.5.4	Inplane forces in Y-direction (N _y)	17
2.5.4.1	Inplane forces in short wall	17
2.5.4.2	Inplane forces in the floor	16
2.5.5	Lateral deflection of long wall top	
	edge at midspan(V _b)	16
2.6	Comparison between the finite element	
	solution for open tank and results obtained	d
	from tables given by Czerny	19
2.6.1	Vertical bending moment at wall-floor	
	junctions (M _x (a))	19
2.6.2	Horizontal bending moment $(M_{\pi}(e))$	20
CHAPTER 3:	Behaviour of elevated rectangular tanks	
	provided with top horizontal beams and tie.	34
3.1	Introduction	34
3.2	Representation of results	35
3.3	Discussion of results	35
3.3.1	Bending moments about X and Y axes	35
3.3.1.1	Bending moments of long wall bottom	
	at midspan (M _* (a))	35
3.3.1.2	Bending moment of the short	
	wall bottom at midspan $(M_{\gamma}(c))$	36
3.3.1.3	Bending moment of floor middle point	
	about X-axis (M,(f))	36
3.3.1.4	Bending moment of floor middle point	
	about Y-axis (M _v (f))	3 7
3.3.2	Bending moments about 7 axis	37

3.3.2.1	Bending moment at wall's junction line	
	top edge (M _z (e))	37
3.3.2.2	Bending moments of the long wall	
	top edge at midspan $(M_x(b))$	3E
3.3.2.3	Bending moments of the short wall	
	top edge at midspan $(M_x(d))$	36
3.3.3	Inplane forces in X-direction N_{\star}	35
3.3.3.1	Inplane forces in long wall	39
3.3.3.2	Implane forces in floor	35
3.3.4	Inplane forces in Y-direction Ny	40
3.3.4.1	Inplane forces in short wall	40
3.3.4.2	Implane forces in the floor	41
3.3.5	Lateral deflection of long wall	
	top edge at midspan (V_b)	41
CHAPTER 4:	Behaviour of covered elvated rectangular	
	tanks	48
4.1	Introduction	46
4.2	Representation of Results	48
4.3	Discussion of results	49
4.3.1	Bending moment about X & Y axes	45
4.3.1.1	Bending moment of the long wall	
	bottom at midspan $(M_*(a))$	45
4.3.1.2	Bending moment of short wall	
	bottom at midspan $(M_{\gamma}(c))$	49
4.3.1.3	Bending moment of floor middle point	
	about X-axis M _x (f))	50
4.3.1.4	Bending moment of floor middle point	
	about Y-axis (My(f))	50
4.3.2	Bending moment about Z-axis	51
4.3.2.1	Bending moment at walls junction line	
	top edge $(M_x(e))$	51
4.3.2.2	Bending moment at long and short walls	52
4.3.3	Implane forces in X-direction	52
4.3.3.1	Inplane force in long wall	57
4.3.3.2	Inplane force in floor	52
4.3.4	Inplane force in Y-direction (N_{γ})	53
4.3.4.1	Innlane force in short wall	57

4.3.4.2	Inplane force in floor	54
4.3.5	Lateral deflection	54
4.3.6	Horizontal reactions at the support "o".	54
CHAPTER 5:	Approximate analysis of elevated rectangular	_
	tanks	66
5.1	Introduction	66
5.2	Approximate analysis method	66
5.3	Compatibility of displacement	67
5.4	Results and discussion	68
5.4.1	Studied Cases	68
5.4.2	Internal forces for aspect ratio 1	69
5.4.3	Internal forces for aspect ratio 2	69
CHAPTER 6:	Conclusions and recommendations	B 5
6.1	For open tanks (case A)	85
6.2	Open tanks with top horizontal beams.	
J	(case B & C)	85
6.3	Open tanks with top horizontal beams.	
1	(case D & E)	86
6.4	Covered tanks (case F)	86
6.5	Tanks of small aspect ratio (less than 2)	86
6.6	Approximate analysis using membrane plate	86
6.7	Recommendations for future research work.	87
	References	88

LIST OF FIGURES

CHAPTER II

2.1	Wall under hydrostatic pressure	21
2.1	Analyzied part of tank	22
2.3	Finite element mesh for aspect ratio(1> 2)	23
2.4	Finite element mesh for aspect ratio(2.5> 4)	24
2.5	Bending moment about x & y axes	25
2.6	Bending moment about z axis	26
2.7	Inplane forces in X direction	27
2.8	Inplane forces in Y direction	28
2.9	Lateral deflection of long wall top edge	
	at midspan	29
2.10	Vertical bending moment at walls- floor	
	junction $M_{\times}(a)$	30
2.11	Horizontal bending moment at wall-wall	
	junction $M_{\pi}(a)$	31
CHAPTER	111	
3.1	Analyzied part of tank	42
3.2	Bending moment about X & Y axes	43
3.3	Bending moment about Z axis	44
3.4	Implane forces in X direction	4 5
3.5	Implane forces in Y direction	46
3.6	Lateral deflection of long wall	
	top edge at midspan	47
CHAPTER	IV	
4.1	Analyzied part of tank	56
4.7	Finite element mesh for aspect ratio (1> 2)	57
4.3	Finite element mesh for aspect ratio (2.5> 4)	58

	4.5	Bending moment about z axis
	4.6	Implane forces in X direction
	4.7	Implane forces in Y direction
	4.8	Lateral deflection of long wall top edge
		at midspan 63
	4.9	Horizontal reactions R _* & R _y
		at the origin of the tank
	4.10	Lateral deflection of walls top edges 65
CHA	PTER	V
	5.1	Finite element used in the approximate
		analysis 71
	5.2	Finite element modeling
	5.3	Compatibility of grillage elements
	5.4	Compatibility at junction line
	5.5	Bending moment diagram at midspan
		$M_{\pi}/(w1^2/50)$
	5.6	Implane normal forces at midspan $N_{\times}/(wl/10)$ 76
	5.7	Bending moment diagram at top edge
		$M_x/(w1^2/50)$ 77
	5.8	Inplane normal forces at top edges
		N_{\times} & $N_{y}/(w1/10)$ 78
	5.9	Bending moment diagram at midspan
		M _F /(wI^2/50)79
	5.10	Inplane normal forces at midspan
		N _× /(w1/10)80
	5.11	Bending moment diagram at midspan
		My/(w1^2/50)81
	5.12	Inplane normal forces at midspan $N_y/(w1/10)$ 82
	5.13	Bending moment diagram at top edges
		M _x /(w1^2/50)83
	5.14	Inplane normal forces at top edges
		B1