AIN SHAMS UNIVERSITY
Faculty of Engineering

A THESIS SUBMITTED ON
"Application of Solar Energy in Heating"

Energy and automotive engineering department

Presented By

Eng. Ibrahim Asmatt Helmy Aly Zayan
(B.Sc. and Diploma Mechanical Power Engineering)

For The degree of Master of Science

Supervised By
Prof. Dr. Ahmed El Said Gad El Mawla
Ain Shams University
Associate Prof. Dr. ZAKARIA GHONEIM
Ain Sahms University

14281

Cairo, 1983.

AIN SHAMS UNIVERSITY

Facul ty of Engineering Energy and automative engineering department

A THES IS SUBMITTED ON "Application of Solar Energy in Heating"

Presented By
Eng. Ibrahima Asmatt Helmy Aly Zayan
(B.Sc. and Diplomem Mechanical Power Engineering)

For The deegree of Master of Science

Approved By

Prof . Dr. Ibrahim Sak♥ Nati⊸onal Research Center

Prof . Dr. Nassif Rafaat Cairo University

Prof. Dr. A_hmed El-Said Gad El Mcwla
Ai_n Shams University

Cairo, 1983.

acknowled (MENT

Before starting to record my humble effort in this study, I ought to take to oppositunity of illustrating my deepest sensations and full gratitude to the great and valuable help of my professors who have given me the great momentum and enable me to come to a successful end of my research.

This occasion enabled me to readily beleived when I say that this research on the application of solar energy in drying process did not originate and never wood have originated without the help of Professor Dr. Eng. Ahmed El Said Gad El Ludwla, Prof. of Heat Engines, Faculty of engineering, Ain Shams University who contemplated for a long resies of miscellaneorss orientations during the long supervision of four years work. In the same to me I must be allowed to familiarise the readers of my research with the contribution of Associate Professor Dr. Zakaria Ghoneim; who did not preserve any effort in implimentation of this research.

I have to mention with gratitude the great help of Professor Dr. Salah Arafa Head of physics department, Faculty of Science, American University of Cairo. Undoubtedly the great help to be mentioned is that of his excelency the minister of defence and his great assistances who spared me the time and means to reach my aim and whose encouragement filled me with the momentum to the end of the way.

Finally I voice a special note of thanks to my family and my wife for the support they gave and sacrifices they mode to complete this thesis.

SUMMARY

Design and manufacturing a solar drier. This study was concerning designing and manufacturing a drier of 2.5 meter square area to dry the agricultural products and food stuff by using the solar energy as an alternative source for the conventional energy to heat the air flow used.

This drying process is essential to preserve the stored stuff for an adequate period without any decay to keep it adible.

In this study calculations for the average hourly values of the radiation intensity incident on the unit area of the drier's cover with an inclination of 45° to the horizontal surface were made all over the year by using (LIU & Jordan) method.

This study included counting the average of mass air flow passing through the openings at the bottom end of the drier per hour and successively per day all over the year and the quantity of that air ranged between 40 to 47 cubic meter per hour.

The temperature of the hot air inside the drier was counted by the same way and it ranged between 65 to 78°C all over the year.

The study included also the factors controlling the quantity of the air flow passing through the drier by erecting a chimney 1.3 meters height at the top of the drier and got the proportional relation between the dimensions of that chimney and the mass air flow through the drier.

A study has been made on the effective factor on the temperature of the air flow inside the drier and due to that an equation has been deducted to show the relation between the dimensions of the drier with the temperature of the air heated inside. Other results from this equation showed the relation between the radiation intensity and the physical characteristies of the material used and the air temperature.

The study also illustrated the most suitable way to determine the mass of the product to be dried by knowing the moisture content of the product before and after the drying process.

- V -

two years to indicate the temperature of the air in and outside the drier and the absorber plate, and to measure the mass air flow in the first year with the plastic cover and in the second year with the glass-cover.

In both cases mentioned above the temperature of the air inside the drier ranged between 60 to 70°C and the absorber plate temperature ranged between 85 to 120°C and the mass air :low ranged between 37 to 45 cubic meter per nour all over the year.

The study was assisted by computer programs to ensure the most accuracy possible beside that a comparison between the results of the theoretical and practicals measures and the difference ranged between 6 to 8°C in the air temperature while it ranged between 2 to 3 cubic meters per hour of air flow luring the year.

In spite of all that mentioned above, the study did not neglect the economic side of the solar drier to maintion the practical and economic feasibility, and the pay back period covered three years.

The thesis contains the following eight charters :

Chapter I:

This chapter shows historical demonstration for the various kinds of solar driers and classifies them according to the heating mode and the way of heating the product.

The characteristics, performance, and the nationality of each drier was illustrated separately.

Chapter II:

This chapter illustrates the prototype of the drier which was designed, manufactured and erected in the laboratory and workshops of the faculty and describe's the various steps taken to put the drier into a working conditions.

Chapter III :

This chapter describes the theory of heat transfer of the drier and the drying process from the theoretical point of view. Due to that some equations were put to determine the temperature of the air flow in the drier in case of plastic or glass orver. In addition some simple equations were jut to illustrate the drying operation and counting the product required and studying the effective factors on the operation.

Chapter IV:

The chapter presents the fractical measurements which were under all over two nuccessive years to measure the temperature of the durnounding air and inside the drier, the flate temperature and the mass air flow through the drier during the first year the cover of the drier was a plastic sheet while the second year the cover was a sheet of white glass.

Chapter V:

This chapter deals with the calculations which were made and the results we reached. It showed the pressure difference across the bed and in case of the plastic cover sheet a computer program was made to get the out put all over the year as follows:-

- (a) Hourly plate, cover, and air temperature.
- (b) Hourly mass air flow.

- 1x -

CONTENTS

			ruse
ACKNOWLELGME	.T .		<u>;</u>
SUMMARY			
MOLENCIATURE	• • • •		xriii
INTRODUCTION			1
CHAPTER I	PKEV.	LUUS WORK	7
	1.1	ireface	7
	1.2	Technical Characteristics of Soler	7
		briers	
	1.3	Soler briers Classification	8
	1.4	Description of Soler Driers	16
	1.5	Corment	25
CLAPTER II	PKES	ENT "OHK	34
	2.1	The Aim of The Study	34
	5.2	Description and Snape of The Drier	35
	2.3	Components of The Drier	3 8
	2.4	Materials of The Drier	38
		2.4.A Absorber Hate	38
		2.4.B Insulation	40
		2.4.0 Cover Plate	41
CHAPTER III	THE	THEORETICAL ANALYSIS	47
	3.1	The Theory of Heat Transfer	47
		Through The Drier	
		3.1.A Energy Balance Equations of	56
		Solar Drier in Case the	
		Common to White Class	

			Page
	3.3	Utilizing Stack Effect to Control	
		The Amount of Draum Hot Air	77
	3.4	Analysis of Drying Process	79
		3.4.A moisture Content	79
		3.4.B Rate of Drying Curves	80
		3.4.C Constant-Drying-kate Period	82
		3.4.D Falling Rate Period	90
		3.4.E Effect of Shrinkage	93
	3.5	Dystem of Equations Used in The Study	96
CHAPTER IV	EXPERI	WENTAL DRIER MEASUREMENTS AND RESULTS	102
	4.4	Average Measurements of Hot Air	
		Temperature, Ambient Temperature,	
		Plate Temperature, Outlet Air, Velouty	
		and Mass Air Flow Through the Year of	
		1981 in Case the Cover of The Drier is	
		Plastic Sheet	104
	4.B	Average Measurements, of but Air,	
		Ambient, Plate, Temperature, Outlet	
		Air Velocity, and Mass Air Flow.	
		Through The Year of 1982 in Case.	
		The Cover of The Drier is Glass Sheet.	116
CHAPTER V	result	S OF ANALYTICAL TREATMENT OF DRIBE	146
	5.A	The Total Global Radiation Incident on	
		The Cover of The Drier	
	5.B	The Pressure Drop Accross The Tray of	148
		The Drier	

Page

	5.C	Fortran Computer Frogram to Compute
		The Ferformance of The Drier Over
		a Year Round
	5.D	Using a Mini - Computer to Compute
		the Performance of the Drier Through
		Month of July, by Variating the
		Convection Heat Transfer Coefficient
		of the Flate in Case the Cover of
		The Drier is a Flastic Sheet 217
	5.E	Using a Lini-Computer to Compute the
		Performance of The Drier Through
		North of July, in Case the Cover is
		a White Glass 227
	5.F	Calculation the Drying Ferformance,
		Mass of Wet Product to be Dried, and
		Drying Rate Through the Month of
		SANUARY234
CHAPTER VI	LIFE	CYCLE COST 240
	6.1	The Economics of Solar Driers 240
	6.2	Cost of Solar Energy System 243
CHAPTER VII	DISC	CUSSIONS OF RESULTS 245
	7.A	Mathematical Model245
	7.B	Comparison Between Computer Results
		And Experimental Work

U			,
•	м	•	4

	7.C Comparison Between the Calculations	
	and Leasurements in Both Ceses of	
	Flastic and White Glass Covers	273
	7.D Evaluation The Performance of the	
	Drier	281
	7.E Drying Performance	282
CHAPTER VIII	BULLCLUSICHS	287
APPENDIX 1 :	Instrumentation for The Leasurement of	
	The Components of Solar Radiation	291
APPENDIX 2:	Calculation of The Average Daily Radi-	
	ation for Each Calender Lonth on Tilted	
	Cover of The Dryer	294
APPENDIX 3:	Calculation of The Average Optical	
	Characteristics of The Cover and the	
	Absorber Plate	30 5
APPENDIX 4:	Calculation of The Error of Thermo-	
	meter using in Leasurement and Determine	
	The True Air Temperature	311
APPENDIX 5:	Wet-Bulb Theory	324
APPENDIX 6:	Calibration of Thermocouple	331
APPENDIX 7 :	Fortran Computer Program	332
APPENDIX 8:	Variation of Saturation Vapour Pressure	
	of Water With Temperature	335
references		336
ARABIC SUMMAR	Υ	

LIST OF TABLES

Tai

Ta

Table (1): Values of key leigh number, Nusselt numbers, and the internal convection Heat transfer coefficient through winter by using "HOLLANDS'S" melhod.

Ta

Table (2): Values of Ray leigh numbers, Nusselt numbers, and the internal convection Heat transfer coefficient through summer by using "HOLLANDS'S"method.

Table (3): Variation of internal heat transfer coefficient with time during summer, and winter.

Table (4): Average values of internal convection heat transfer coefficient by considering the absorber as heated horizontal plate facing upwards.

Tt

Table (5,6,7,8,9,10,11,12,13,14): Values of average measurements for, ambient air, hot air, plate temperatures and outlet air velocity with time through year 1981, in case the cover is plastic sheet.

 \mathbf{T}

Table (15,16,17,18,19,20): Values of average measurements for ambient air, hot air with and without shield, plate temperatures, and outlet air velocity with time through year 1982 in case the cover in white glass of 6mm thick.