Physical Growth and Intellectual Abilities of Cardiac Children

Thesis

Submitted for Partial Fulfillment of the Requirements for

Ph.D. Degree in

Childhood Studies from the Medical Department
Ain - Shams University

;18.9212 F. S r-Shams Onive

Department,

By

Fardous Soliman Hamed Soliman

M.B.B.Ch.; M.Sc., (Paediatrics)
Cairo University

5-732

Supervisors

Professor Rabha M. Fathy El-Shennawy Fakha El

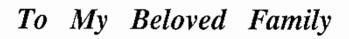
Professor of Paediatrics
Faculty of Medicine - Cairo University

Professor Mohammed Amr Hussein

Director and Chairman of Nutrition Institute

Dr. Laila Ahmed Karam El-Din

Assistant Professor of Psychology Institute of Postgraduate Childhood Studies Ain - Shams University


1993 - 1994

DISCUSSION AND JUDIMENT COMMITTEE

The vice-president for higher studies and research of Ain-Shams University has approved to form the following committee for the discussion of Mrs. Fardous Saliman. Hamed.

- 1. Projessor Rabha EL-Shennawy, Prof. of Paediatrics.
 Cairo University chairman Rabha El. 57.
- 2. Dr. Laila Karam El-Din., Ass. Profess. J. Psychology Inst. of Postgraduate Childhood Stoberember. L.K.
- 3. Professor Teirrab Bishry, Professor of ... Psychiatry, Ain Shame University Member Jew.

ACKNOWLEDGEMENTS

Praise be to *Allah*, the Merciful, the Compassionate for all the countless gifts I have been offered.

With considerable appreciation, I express my great indebtedness and deep gratitude to *Prof. Rabha M. Fathy El-Shennawy*, Professor of Paediatrics, Faculty of Medicine, Cairo University, for her authentic guidance and great help which continued during the whole steps of this work.

I sincerely acknowledge *Prof. Mohammed Amr Hussein*, Director and Chairman of Nutrition Institute, for his sincere encouragement and outstanding assistance all through the whole steps of this research.

I do express my gratitude towards *Dr. Laila A. Karam El-Din*, Assistant Professor of Psychology, Institute of Postgraduate Childhood Studies, Ain-Shams University, who offered valuable guidance and supportive directions during this study.

I also acknowledge *Prof. Kawther M. Soliman*, Professor of Biochemistry, Faculty of Medicine, Cairo University for her genuine support and continuous assistance in this thesis.

I also express my feelings of immense gratitude towards *Dr. Afaf Hussein Sobhy*, Assistant Professor, Department of Nutrition and Food Science, Faculty of Home Economics, Helwan University who offered much of her experience in the dietary research part of this study.

I am much thankful to the sincere contribution of *Dr. Gamal Samy*, Lecturer in the Medical Department, Institute of Postgraduate Childhood Studies, Ain - Shams University for his considerable help and close supervision in this work.

I would like to thank deeply with gratitude *Dr. Ossama Abdel-Rahman Mostafa*, Lecturer of Public Health, Faculty of Medicine, Assiut University for the expert consultation in the field of statistics.

My special thanks gratefully go to *Dr. Dina I.H. Shehab*, Lecturer of Paediatrics, Nutrition Institute, for her sincere guidance in the domain of statistical analysis and also her genuine continuous assistance all through this study.

My thanks extend to every member in the Cardiology Department Clinic, Abu El-Rish University Hospital and the National Cardiology Institute for their cooperation.

Finally, I would like to offer my thanks and sympathy to the young patients and their mothers who were the real axes of this work.

List of Contents

P.	age
Introduction and Aim of work	1
Review of Literature	4
Chapter 1: Congenital and rheumatic heart disease	4
Congenital heart diseases	4
Incidence	4
Aetiology	6
Classification	7
Rheumatic Heart Disease	10
Prevalence	10
Aetiology of rheumatic fever	11
Factors affecting the epidemiology of rheumatic	
fever	11
Clinical picture	13
Prevention	14
Chapter 2: Physical growth	15
Definition	15
Factors affecting growth	15
Child-related factors	15
Nutritional factors	15
Endocrinal factors	16
Activities	16
Illness	17
Family factors	18
Genetic factors	18
Socioeconomic factors	19
Number of sibships	20
Consanguinity	20
Parity	
Psychological factors (emotional environment) .	
Environmental factors	21
Climate	21
Season	21
Altitude	22
Secular trend	22

	Page
Physical growth of cardiac children	23
Physical growth of children with congenital	
heart disease	23
Physical growth of children with rheumatic	
heart disease	28
Chapter 3: Intellectual functioning	30
Intelligence	31
Definitions	31
Factors affecting intellectual development	32
Intelligence tests	42
Intelligence in cardiac children	45
Educational achievement	47
Factors affecting educational achievement	47
Measurement of educational achievement	49
Chapter 4: Chronic illness	50
Definition and epidemiology	50
Impact of chronic illness on growth and	
development	51
In infancy	51
In toddlers and school - aged children	
In adolescence	52
Impact of chronic illness on behaviour and	
emotion	
Impact of chronic illness on the family	
Marital distress	
Parent - child pathology	
Impact of chronic illness on siblings	
Chapter 5: Some concepts regarding nutrition	
Nutrition and Inflammation	56
Interactions between nutrition, immunity and	
inflammation	
Role of essential fatty acids in inflammation .	
Some concepts regarding fat	59
Role of vitamins and trace elements in	
inflammation	
Cardiovascular risk factors in children	
Risk factors that cannot be altered	
Risk factors that can be modified	
Risk factors in children with rheumatic disease .	70

		E	age
*	Subjects and Methods		71
*	Results	-	83
*	Discussion	-	125
*	Summary and Conclusions		143
*	Recommendations		148
*	References		149
*	Appendix I (Clinical Sheet)		
*	Appendix II (Food Intake for 24-Hour Recall)		
*	Appendix III (Food Frequency Check-List)		
*	Appendix IV (Recommended Dietary Allowances)		
*	Arabic Summary		

List of Tables

No.		Page
1	Frequency and percent distribution of studied	
	children by their personal data	84
2	Number and percent distribution of studied children	L
	by social characteristics of their families	85
3	Frequency and percent distribution of studied	
	children according to weight for age, height	
	for age, weight for height, arm muscle area	
	and arm fat area percentiles	86
4	Frequency and percent distribution of weight for	
	age standard deviation for the studied groups	88
5	Classification of nutritional status according to	
	McLaren (1982), reported as percent of the	
	median in cyanotic group	91
6	Classification of nutritional status according to	
	McLaren (1982), reported as percent of the	
	median in acyanotic group	91
7	Classification of nutritional status according to	
	McLaren (1982), reported as percent of the	
	median in rheumatic group	92
8	Classification of nutritional status according to	
	McLaren (1982), reported as percent of the	
	median in control group	92
9	Correlation coefficientsr of weight for age with	
	some studied variables	94
10	Distribution of different study groups according	
	to intelligence grades	96
11	Frequency and percent distribution of scholastic	
	achievement of studied children	102
12	Frequency and percent distribution of school	
	attendance pattern of studied children	104
13	Frequency and percent distribution of some	
	behavioural disorders among studied children .	106
14	Correlation coefficients (r) between Intelligent	
	Quotient and some study variables	108

No.	Pa	age
15	Percentage of congenital cyanotic children having	
	growth retardation (≤ 5 th percentile weight for	
	age) and below average intelligence (IQ less	
	than 90) according to sex, diagnosis and heart	
	failure	109
16	Percentage of congenital acyanotic children having	
	growth retardation (\leq 5th percentile weight for	
	age) and below average intelligence (IQ less	
	than 90) according to sex, diagnosis and heart	
	failure 1	L10
17	Percentage of rheumatic children having growth	
	retardation (≤5th percentile weight for age)	
	and below average intelligence (IQ less than	
	90) according to sex, diagnosis and heart	
	failure 1	111
18	Some clinical data of rheumatic cases	112
19	Clinical data of rheumatic cases with activity 1	L13
20	Daily intake of calories, fat and vitamin A as	
	percent from RDA for children with cyanotic	
	heart disease for both middle and unprivilege	
	social classes	115
21	Daily intake of calories, fat and vitamin A as	
	percent from RDA for children with acyanotic	
	heart disease for both middle and unprivilege	
	social classes	116
22	Daily intake of calories, fat and vitamin A as	
	percent from RDA for children with rheumatic	
	heart disease for both middle and unprivilege	
	social classes	L17
23	Daily intake of calories, fat and vitamin A as	
	percent from RDA for control children of both	
	middle and unprivilege social classes 1	118
24	Dietary analysis of children with low social	
	class 1	L19
25	Dietary analysis of children with middle social	
	class 1	L20
26	Pattern of scheduled food items taken by the	
	studied groups 1	L24

List of Figures

No.	•	Page
1	Percent of wasted cases per studied groups	87
2	Weight for age distribution curve for both the	
	standard WHO and control group	89
3	Weight for age distribution curve for studied	
	groups	90
4	Nutrition status in different study groups	93
5	Distribution of IQ levels in children of cyanotic	
	heart diseases	97
6	Distribution of IQ levels in children of acyanotic	
	heart diseases	98
7	Distribution of IQ levels in children of rheumatic	
	heart disease	99
8	Distribution of IQ levels in children of control	
	group	100
9	Distribution of IQ levels in different study	
	groups	101
10	Scholastic achievement in different study groups	103
11	School attendance pattern in different study groups .	105
12	Distribution of behaviour pattern in different	
	study groups	107
13	Percent median of RDA of calories in different	
	study groups according to socioeconomic class	121
14	Percentage of source of consumed fat in different	
	study groups according to socioeconomic class	122
15	Percent median of RDA of vitamin A in different	
	study groups according to socioeconomic class	123

INTRODUCTION AND AIM OF WORK

INTRODUCTION AND AIM OF WORK

Chronic illness and congenital malformations may cause growth retardation.

Approximately 8 in every 1000 livebirths will have some form of congenital heart disease (Gersony, 1992).

Children with mild congenital cardiac abnormalities tend to grow normally. Those with more severe malformations frequently have evidence of serious growth abnormality. Growth retardation is most severe among those with large left to right shunts causing heart failure. Cyanosis tends to produce a rather parallel retardation of both height and weight while heart failure tends to cause a great retardation of weight than height (Rosenthal, 1993).

Rheumatic fever is the most frequent cause of heart disease in the 5 to 13 years old group, causing 25% to 40% of all hospital admissions in developing countries. The estimated prevalence in 1986 of chronic rheumatic heart disease is 7 per 1000 persons of all ages (Hurst, 1990).

In Egypt, rheumatic heart disease is still the predominant form of heart disease in children (El-Sherief, 1978) with a prevalence of 3.6-3.9 per thousand (Tawfique et al., 1988 and Mahfouz et al., 1989). It was reported that the maximum age incidence was between 4 and 12 years in the majority of cases (Kassem et al., 1982).

Chronic illness significantly affects the child developmental process in ways that may contribute to behavioural problems. Children with long term handicapping conditions appear to be at greater risk of behavioural problems than healthy children (Smith and Van Tassel, 1982).

Children with severe and chronic cardiac abnormalities are more likely to be absent from school for long periods of time and this might affect their educational achievement and might show in their scores on intelligence tests.

Statement of the problem:

The problem of the present study can be stated in the form of the following questions:

- 1- Does the suffering heart affect the physical growth of the child?
- 2- Does the suffering heart affect the intelligence of the child?
- 3- Does the suffering heart affect the educational achievement of the child?
- 4- Does the suffering heart affect the behaviour of the child?
- 5- Does the diet intake differ in cardiac from those normal children?

Hypothesis:

- 1- There is a significant difference between cardiac and normal children in their physical growth
- 2- There is a significant difference between cardiac and normal children in their intelligence

- 3- There is a significant difference between cardiac and normal children in their educational achievement
- 4- There is a difference between cardiac and normal children in their behavioural abnormality
- 5- There is a difference between cardiac and normal children in their dietary intake

Aim of the Study:

The present study has the following main aims:

- Assessment of physical growth of children with cardiac lesion both congenital and rheumatic
- Assessment of the intelligence of those children
- Assessment of their educational achievement
- Assessment of some behavioural disorders
- Assessment of their dietary pattern