AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

ON THE ULTIMATE CAPACITY OF COMPOSITE SIMPLE BEAMS

84

NADIA ABD EL ZAHER WAHDAN

B.Sc. CIVIL ENGINEERING

AIN SHAMS UNIVERSITY , 1985

624.17723

A THES IS

SUBMITTED IN PARTIAL FULFILLMENT FOR THE REQUIREMENTS OF THE DEGREE OF MASTER OF SCIENCE IN STRUCTURAL ENGINEERING

SUPERVISORS

PROF. MOSTAFA KAMEL N. ZIDAN STRUCTURAL ENGINEERING DEPT. FACULTY OF ENGINEERING AIN SHAWS UNIVERSITY

Dr. IBRAHIN SHAWKY NOHARRAM STRUCTURAL ENGINEERING DEPT. FACULTY OF ENGINEERING AIN SHAWS UNIVERSITY

Dr. KAMAL SAID ABDEL-AZZIZ STRUCTURAL ENGINEERING DEPT. FACULTY OF ENGINEERING AIN SHANS UNIVERSITY

Acknowledgements

The author wishes to express her sincere appreciation and deep gratitude to Dr. Mostafa Kamel M. Zidan , Professor of theory of structures , Faculty of Engineering , Ain Shams University , Dr. Kamal Said Abdel-Aziz , lecturer, structural Engineering Department , Faculty of Engineering , Ain Shams University and Dr. Ibrahim Shawky moharram , lecturer, structural Engineering Department , Faculty of Engineering , Ain Shams University for their kind supervision , unlimited help , guidance , valuable suggestions and generous support during all phases of this research work.

The author is indebted to Dr. Adeeb Gohneimy professor of Computer Engineering , Faculty of Engineering , Ain Shams University for allowing the use of the computer facilities available at the faculty . The author also extends her appreciation to all members of the staff of the department of computer for their assistance and endless co-operation .

The author is indebted to Dr. Mohamed Sameh Ibrahim, Professor of Computer Engineering, for allowing the use of the computer facilities available at the company.

The author is indebted to Dr. Abd El-Monhem Wahdan professor of Computer Engineering , Faculty of Engineering , Ain Shams University for his continuous encouragement , his useful advices and his unlimited help.

Finally the author dedicates this thesis to her family especially her mother and father, for their continous encouragement, sacrifice and fruitful care.

STATEMENT

This dissertaion is submitted to $\mbox{Ain Shams University for the}$ degree of Master of science in Structural Engineering .

The work included in this thesis was carried out by the author in the Department of Structural Engineering , Ain Shams University , from November 1986 to March 1992 .

No part of this thesis has been submitted for a degree or a qualification at any other university or institution .

Date :

Signature:

Name : Nadia Wahdan

Examiners committee

Name , Titel and affiliation

Signature

- Shaffik Aggour Professor Faculty of engineering Cairo university .
- 2 Gamal El Din Nassar Professor Faculty of engineering Ain Shams university.
- Mostafa Kamel M. Zidan Professor Faculty of engineering Ain Shams university.

S. Cassa

77.5h. Aym

Ain Shams University Faculty of Engineering

Dept of : Structural Engineering

Abstract of the M.Sc. Thesis submitted by : Nadia Abd El Zaher Wahdan

Title of Thesis "Effect of degree of connection on the ultimate capacity of composite simple beams ".

Supervisors : (1) Prof Mostafa Kamel M. Zidan

(2) Dr. Ibrahim Shawky Moharram

(3) Dr. Kamal Said Abdel-Aziz

Registration Date: 12/2/1926 Examination Date: 23 / 5 / 1992

Abstract :

A proposed calculation model is adopted for the analysis of the composite simple steel-concrete beams , valid up to collapse , which takes into account the effects of different parameters such as :

Material non-linearity , the effect of slip at the interface between concrete slab and the steel girder , load-slip curve , spacing and the type of connectors , type of loading , geometrical configration of the cross sectionetc . The resolution of the model is made easier in adopting the formulation by transfer matrix method , the unknown vector containing some internal forces and generalized displacements .

A computer programme is developed to deal with this mathematical model . After checking the efficiency and accuracy of the proposed model and the computer programme with the available experimental test results , a versatile parametric study is performed to investigate the effects of the degree of connection , the goemetrical dimensions of composite section and the type of loading on the overall behaviour of the composite beams.

Key words :

Composite beam and transfer matrix .

TABLE OF CONTENTS

Ack	nowledgements	i
	tement	
Exa	miners committee	iii
Abs	tract	iv
Table of contents		
Introduction 1		
Cha	pter I	
Rev	iew of composite beams analysis	
I – 1	Introduction	5
I-2	Construction components of composite beams	6
	I-2-1 Steel beam	6
	I-2-2 Reinforced concrete slab	6
	I-2-3 Shear connectors	6
I-3	Properties of materials used for composite beams .	12
	I-3-1 Stress-Strain curves of steel	12
	I-3-2 Stress-Strain curves of concrete	17
I-4	Construction methods	19
I-5	Effective breadth of concrete slab used in the	
	analysis of composite beams	21
I-6	Limiting deflections and the use of span-depth	
	ratios	24
I-7	Methods of analysis and design	26
	I-7-1 Flactic full interaction and	

1-7-2 Ultimate full interaction and	alysis	35
I-7-3 Elastic and ultimate partial		
interaction theories		41
Chapter II		
Theoretical Model of Analysis		
II-1 Introduction		49
II-2 Notations		50
II-3 Assumptions		54
II-4 Proposed mathematical model		57
II-4-1 Relations between internal f	orces and	
deformations		57
II-4-2 Compatibility equation of de	formation at	
the concrete-steel interface		58
II-4-3 Equilibrium equation for the	composite	
section		60
II-4-4 Equilibrium Equation at a cor	nnector	
position	• • • • • • • • • • • • • • • • • • • •	61
II-5 Discrete Analysis of the problem	• • • • • • • • • • • • •	63
II-6 Equations of the problem for the inte	erval δx _i	66
II-7 Solution of the problem		
II-7-1 Transfer-matrix method		69
II-7-2 Boundary conditions of the un	knowns	
of the problem		73

]	H-7-3	Determination of the unknowns	
		of vector	73
]	I -7-4	Non linear inelastic iteration	
		procedure	81
1	I-7-5	Convergence of solution	82
I	I-7-6	Failure modes	83
II-8 E	Quivale	ent axial and flexural rigidities	
i	n elas	tic-plastic range	85
II-9 c	omputer	programme	93
Chapte	r III		
Compar	ison be	etween experimental and	
theore	tical r	results	99
I I I – 1	Introd	duction	99
111-2	Geomet	ry and properties of the tested beams	101
	III-2-	1 General	101
	III-2-	2 Simple composite beams loaded by	
		a single concentrated load	
		at mid-span	104
	III-2-	3 Simple composite beams loaded by	
		a uniformly distributed load	106
111-3	Compar	ison between the theoretical and	
	experi	mental results	108
	III-3-	1 Beams under point load at mid-span	108

111-3-2 Beams under uniformly distributed
load 132
Chapter IV
Partial interaction analysis of composite simple
beams 151
IV-1 Introduction
IV-2 Effect of degree of connection (r) 154
IV-3 Influence of the dimensions of composite sections. 168
IV-3-1 Effect of concrete slab thickness 168
IV-3-2 Effect of concrete slab breadth 173
IV-3-3 Effect of concrete slab reinforcement 176
IV-3-4 Effect of steel beam cross section 181
IV-3-5 Influence of the type of loading 189
Chapter V
Summary and Conclusion
V-1 Summary 195
7-2 Conclusions 196
7-3 Recommendations for further studies 199

Appendix A		
List of the computer programme	203	
Appendix B		
Example Results		
Appendix C		
Equivalent axial and flexural rigidities of concrete		
slab and steel I-beam section .		
C-1 Case of the steel cross section	247	
C-2 Case of the concrete slab section	250	
Appendix D		
Full and partial interaction design for composite		
simple beams .		
D-1 Full interaction calculation for composite		
simple beams with solid slab	257	
D-1-1 Ultimate capacity for beam B1		
according to CP117	257	
D-1-2 Ultimate capacity for beam B1		
according to E.C.4	260	
D-2 Partial interaction calculation for composite		
simple beam with solid slab	263	

D-Z-1	offimate capacity for beam B9	
D-2-2	according to CP117,[3]	260
	Ultimate capacity for beam B9	
	according to E.C.4, [12]	266

INTRODUCTION

INTRODUCTION

Composite construction has played a very important role in structural engineering. Its use has varied from small structures to large buildings and bridges. The basic principle underlying composite construction is that certain materials may be used more effectively in certain types of stressed conditions; thus, the combination of a material strong in compression with one strong in tension makes a very economical union for its use in structures. With basic materials such as concrete, steel, masonry, wood and timber, a number of successful combinations can be used; however, until now, such information has not been readily available to design for practicing engineers.

The most common composite construction in buildings and bridges is the composite steel-concrete wherein a steel beam and a reinforced concrete slab (cast-in-situ or precast) are so interconnected with shear connectors that they act together as a unit . In the common type of composite beam , there is some shear transfer by bond and friction at the interface between steel beam and concrete slab. It can not be depended upon if there is a single overload or pulsating load that will destroy such bond and cause a separation of the slab from the beam . Hence , shear connectors are needed to give reliable composite action with two objectives:

1- To transfer shear between the steel and concrete , thus limiting the slip at the interface so that the slab beam

- system acts as a unit to resist longitudinal bending (with one neutral axis for the composite section)
- 2- To prevent an uplift between the steel beam and concrete slab , i.e. , to prevent separation of the steel and concrete at right angles to the interface .

Various types of shear connectors have been used to resist longitudinal shear and uplift . In a broad sense , connectors may be divided into two categories , rigid and flexible connectors. It must be pointed out that slip must occur before they are utilized ; therefor , the terms are relative . Usually the interaction between steel beam and concrete slab is incomplete due to slip caused by flexibility of shear connectors and the compressibility of concrete . It produces a discontinuity in the distribution at the interface . Some researches developed a partial interaction theory in the elastic range assuming a linear load-slip relation for the connectors . They showed that fairly large variations in the value of the shear (defined as the ratio of load to slip) connector modulus affected the deformations only slightly; however, such variations affected the deflection considerably and to a large degree the elastic strains and stresses . The partial interaction theory has been extended to take into account the nonlinear load-slip characteristics of shear connectors and also the inelastic behaviour of steel and concrete material .