1/1000/

Ain Shams University Faculty of Engineering

INVESTIGATION

OF

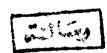
A MODIFIED DUAL CONVERTER

A THESIS

Submitted in Partial Fulfillment of
The Requirements of the Degree of Master of
Science in Electrical Engineering

29676

621.812 A. A


SUPERVISED BY

Prof. Dr. ABDEL FATTAH M. KHEIRELDIN Dr. AHMED D. EL-KOSHAIRY
Professor Associate Professor

Dept. of Elect. Power & Machines

Faculty of Engineering

Ain Shams University

Cairo - 1989

EXAMINERS COMMITTEE

Name, Title & Affiliation

Signature

- 1. Prof. Dr. ABBAS A. EL-HEFNAWY

 Professor, Dept. of Elect. Power & Machines

 Shibien El-Koum Faculty of Engineering

 Menofia University.
- 2. Prof. Dr. AHMED A. EL-SATTAR

 Professor, Dept. of Elect. Power & Machines

 Faculty of Engineering,

 Ain Shams University.
- 3. Dr. AHMED D. EL-KOSHAIRY

 Associate Professor, Dept. of Elect.

 Power and Machines,

 Faculty of Engineering,

 Ain Shams University.

te: / /1989.

STATEMENT

This dissertation is submitted to Ain Shams University for the degree of Master in Electrical Engineering.

The work included in this thesis was carried out by the author in the Department of Electrical Power and Machines, Ain Shams University, from 12/11/1984 to

No part of this thesis has been submitted for a degree or a qualification at any other University or Institution.

Date :

Signature:

Name : Abdel Migeed Ahmed

ACKNOWLEDGEMENTS

The auther would like to express his deepest thanks and gratitude to Prof. Dr. Abdel Fattah M. Kheireldin and Dr. Ahmed D. El-Koshairy for their kind help, guidance and valuable remarks throughout the course of this thesis.

Thanks are also due to Prof. Dr. Aly K. El-Kharashy, Head of the Dept. of Elect. Power and Machines, Ain-Shams University, for all the facilities he made possible under the disposal of the auther.

Mr. Hassan M. Dawood, Owner of Alag Trading
Company, deserves special thanks for the research
equipment he presented to the Laboratory of Elect.
Machines, Ain-Shams University and became a corner stone
for this research.

The auther wishes to thank also his wife for years of patience and understanding during this research work.

Finally, he would like to thank all those who helped him directly or indirectly in preparing this study.

SUMMARY

In this thesis, a simple dual converter is presented. The converter comprises two anti-parallel connected threephase bridge rectifiers, operate in the rectification mode. Braking is brought about by load conditions and not through regeneration to AC supply unlike the case of conventional dual converters. In this case three-phase fully-or helfsince no zero current, no zero speed detection nor invercontrolled bridges can be used. sion procedure are needed in the proposed converter. While the first bridge is supplying the motor in the positive direction, at the proper instant a command signal is initiated to block the firing signals to that bridge causing motor to decelerate under load and friction torques. After elapse of a pre-set adjustable time, through electronic timer, firing signals are applied to the second bridge rectifier. The reverse current supplied in this case will depend on the back emf of the running motor and the rate of dc voltage application. A reverse torque will be produced bringing motor to a rapid stop and then accelerates it in the negative direction. Control circuits operate both bridges under current limit conditions to protect both motor and converter from excessive currents during acceleration and reversal process.

The system can be tuned to perform the required oscillatory motion by adjusting both the position of limit switches along the track of motion in both directions, and the dead zone timing adjusted by the electronic timer.

A model for the proposed converter was used to feed a dc 220-Volt, 13-Amp., separately excited motor loaded by a friction disc. A storage osciloscope was used to obtain oscillograms for the drive voltage, current and speed during the whole duty cycle of motion. Three main variables were considered during tests and those are motor speed, load torque and dead zone timing.

The proposed dual converter is intended for relatively small-size drives with small moment of inertia so that regeneration of stored energy back to the AC supply is not necessary. The presented converter has the advantages of; simple control system, there is no possibility of inversion failure, and low cost. All the advantages of half-controlled bridges can be gained in the proposed converter including simple firing circuits, high power factor and less number of thyristor elements leading to even lower cost, unless fully-controlled bridges are needed for lower harmonic contents because of easy filteration of fully-controlled bridges.

LIST OF CONTENTS

																Page
ACKNOWLEDG	EMENTS	•				•		•				•	•			iii
SUMMARY						•					•		~			iv
LIST OF CO	NTENTS											-				vi
															-	• -
CHAPTER 1	INTRO	DUC!	TION	T .												
1.1	Gener	al	• •		•	•		•	•		•	•	•	•	•	1
1.2	Main	fea	ture	s c	of t	he	thy	ri	st	or	dri	ĹVε	s	•	•	4
1.3	Vario	us (driv	e s	syst	en;	s fo	r	d.	c•	mot	tor	' S			
	Using	th	yris	tor	• c c	nve	erte	r	•							5
	1.3.1	Fi	rst-	que	dre	nt	cor	ıve	rte	er	•	•		•		5
	1.3.2	Two	o - qu	adr	ant	; e	on v e	ert	er	•			•			5
	1.3.3	Two	o-qu	adr	ant	c	ontr	ol'	aj	.ma	tur	'e				
			rers		•									•		8
	1.3.4	Two	o−qu	adr	ant	cc	ntr	ol	, 7	two	co	nγ	er	te	rs	11
CHAPTER 2	FUNDA	MENO	TALS	OF	EL	ECI	RON	ΙC	CI	IR C	UIT	'S	US:	ED		
2.1	Integr									•					•	15
	2.1.1	The	e ou	tpu	t v	olt	age	e e	gue	ti	on			_		15
	2.1.2															16
			. 2.													16
			. 2.									ur.	re.	116	•	-
										_		•	•	•	•	16
			. 2.											•	•	18
		2. 1	.2.4	1 S	et/.	Res	ts	wit	tch	ine	z t	im	es		•	20

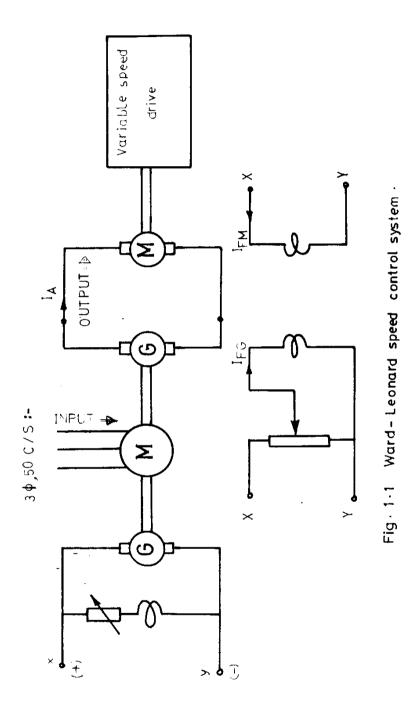
	I	Page
	2.1.3 Augmenting integrator	20
2.2		22
2.3	Operational amplifier (Op Amp) error	- 4
	sources	24
	2.3.1 Bias currents	
	2.3.2 Current drift	24
	2.3.3 Voltage offset	27
	2.3 1 Office + Juice	28
2.4		30
2.5	Common mode gain (CMG)	31
	Noise	33
	2.5.1 Filteration	33
	2.5.2 Noise figure	34
	2.5.3 Interference noise	34
	2.5.3.1 Noise sources	36
	2.5.3.2 Instructions	3 8
2.6	Pulse transformer (D. m)	38
	2.6.7 P.T. abarastanta	38
	2.6.2 P.T. connection	39
	2.6.3 P.T. cinquit	39
	2.6.4 Precentions	<i>ン</i> フ

		Page
CHAPTER 3	CONVERTER ELECTRONIC CONTROL CIRCUITS.	
3.1	Introduction	44
3.2	Logic circuit (L)	47
3.3	Ramp function generator (RG)	51
3.4		54
3.5	Current controller (C)	58
3.6	Current transducer (CD)	64.
3.7	Converter selection circuit (T)	72
3.8		72
3.9		76
3.10	Theory of operation	86
CHAPTER 4	TIVADDITON.	92
CONCLUSION		117
APPENDI CES		
A	BASIC OPERATIONAL AMPLIFIER (Op Amp.)	
	A.l Inverting amplifier	118
	A.2 Differential amplifier	119
	A.3 Summing amplifier	119
	A.4 Non-inverting amplifier adder	121
	A.5 Voltage follower	123
В	FACTORS AFFECTING RAMP RATE.	125

														Page
C	ACTI	VE FI	LTER.											
	C.1	Intro	oduct	ion			•	•	 •	•		•	•	127
	C.2	R.C.	Filt	er				•	 •	•		•	•	128
	C.3	Acti	ve fi	lter	٠.		•	•	 •	•	•	•	•	128
D	REGU	LATED	D. C.	POW	VER	SU	PPI	ĽΥ •						132
														135

CHAPTER 1

INTRODUCTION TO


DIRECT-CURRENT ADJUSTABLE SPEED DRIVES

1.1 General

Almost all power utilized by industry is brought into the plant through an electrical a.c. distribution system. This is invariably a three-phase, 50 Hz system.

Since power is normally distributed at constant frequency and constant voltage, and since d.c. adjustable speed systems require direct current and adjustable voltage, a fully controllable power conversion unit is of main importance.

A motor-gen utilizing an a.c. motor to drive a dc generator, with control of the generator field, has provided this function as shown in figure 1.1. In this type of units, rectification from a.c. to d.c. is performed by the commutator of the d.c. generator, by electromechanical means. The voltage magnitude is controlled by manipulation of the generator field excitation.

Conversion of a.c. to d.c. can also be accomplished by static rectifier devices which allow current to flow in one direction, but not in the opposite direction. The magnitude of the dc voltage may then be controlled by gating the portion of each cycle so that current is allowed to flow. The gating function can be performed by a firing signal as in thyristors. Power conversion of this type is completely static, and no electromechanical devices are required between the power source and the terminal of the drive motor.

The thyristor drive has the following advantages:

- 1. The time response is faster.
- Minimal maintenance is required.
- 3. No resistors are needed and the power losses in the thyristors are negligible, hence operating efficiency is high, above 95%.
- 4. Small size, less weight, and packaging flexibility results in reduced space requirement, lower initial cost, and lower installation and operating costs.

The thyristor drive has the following disadvantages:

1. The converter output has higher ripple content, the addition of a reactor in the armature circuit may be required to smooth out the ripple current.

- 2. Under certain operating conditions, the power factor of the a.c. supply is low.
- 3. Distortion of the a.c. supply voltage may be produced due to the switching action of thyristors.
- 4. Complex control circuitry is required to achieve regeneration.

1.2 Main Features of the Thyristor Drives

A gate triggering processor receives external inputs such as actual speed, actual current, actual torque, etc. These inputs are picked off the power circuit by means of suitable transducers. In addition, the processor can be set for any desired motor speed and torque. The actual values are compared with the desired values, and the processor automatically generates gate pulses to bring them as close together as possible. Limit setting are also incorporated so that the motor never operates beyond acceptable values of current, voltage, and speed.

It is also possible to control the speed of the motor to virtually any desired accuracy, by means of appropriate closed-loop control circuits. If the required accuracy is not too high, it may be sufficient