

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

The Use Of Personal Computer In Controlling Internal Combustion Engines

Eng. Maged Mahmoud Ibrahim

B.Sc. 1988

A Thesis

Submitted In Partial Fulfillment For The Requirements Of The Degree Of Master
In Mechanical Engineering

Supervised By

Prof. Dr. A. H. Bawad

And

Associate Prof. Dr. Abdul Aziz Morgan

Cairo-1996

Examiners Committee

The undersigned certify that they have read and recommend to the faculty of Engineering, Ain Shams University for acceptance a thesis entitled "The Use Of Personal Computer In Controlling Internal Combustion Engines", submitted by Eng. Maged Mahmoud Ibrahim, in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering.

Signature

1- Prof Dr. Abdul Fatah Ibrahim Abdul Fatah.

Professor Of Mechanical Engineering,

Faculty Of Engineering, Alexandria University.

2- Prof Dr. Khaled Ibrahim El Sayed Salah

Associate Professor Of Electrical Engineering Faculty Of Engineering, Ain Shams University

3- Prof Dr. Ahmed Hassan Bawady

A. Bawady Professor Of Mechanical Engineering, Faculty Of Engineering, Ain Shams University.

4-A. Prof. Dr. Abdul Aziz Morgan

Associate Professor Of Mechanical Engineering, Faculty Of Engineering, Ain Shams University.

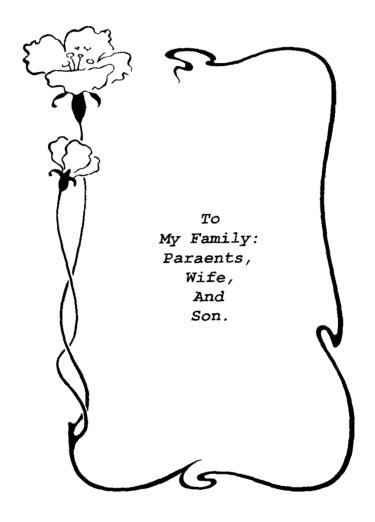
36 36 36 36 36 36 36 36

Statement

This dissertation is submitted to Ain Shams University for the degree of Master in Mechanical Power Engineering.

The work included in this thesis was carried out by the author in the Department of Mechanical Power Engineering, Ain Shams University, from November 1989 to November 1996.

No part of this thesis has been submitted for a degree qualification at any other university or institution.


Date :

Signature:

Name : Maged Mahmoud Ibrahim.

30 36 30 36 30 30 30 30

Abstract

A micro-computer based control system is designed and manufactured to control the speed of a single-cylinder four-stroke spark ignition engine. A test rig has been prepared to achieve the above requirement.

The test rig is composed of an engine generator set, electrical loading facilities, recording and control elements and a microcomputer. The fuel and air feeding systems have been modified to suit the new control system. A computer software is specially devised to record engine speed, compares it with a reference preset value then decides the correct amount of fuair to attain the specified engine speed with the lowest allowable error.

Electronic circuits were designed to handle the computer signals and send it to the fuel and air stepper motors to adjust fuel and air mass flow rates. The effect of using a Proportional, Integral and dervative, PID, controller was studied experimentally to obtain the best parameters for fast response and good engine stability.

Experimental results show that the engine control system can maintain the speed with a maximum droop of 1.5% for most engine operating conditions. Increasing the controller gain may result in engine instability.

The controller derivative action is necessary for damping the overshoot when engine is suddenly loaded or unloaded with great percent.

36 36 36 36 36 36 36

Acknowledgment

I would like to express my thanks to **Dr**.

A.H.Bawady for his sincere guidance, valuable advice and great assistance at all stages of the work.

Many thanks to Dr. Abdul Aziz Morgan for his patient support during the preparation and working of this thesis.

Special thanks to **Dr. Hasan Ahmmed Hasan** for his help and support throughout the research work.

Finally I would like to express my deepest gratitude to the team of work of GUPCO and KASSEMTEX. companies for their encouragement.

36 36 36 36 36 36 36

Contents

		Page
• Abstract		i
• Acknowledgment		iii
• Table Of Conte	nts	iv
• Chapter 1 In	ntroduction	1
• Chapter 2 L.	iterature Survey	4
• Chapter 3 E.	lectronic And Electric	
C	omponents, Relevant To THE	
P	resent Work	13
<u>3.1</u> Transis	tors	13
<u>3.2</u> Diodes.		15
<u>3.3</u> The Inte	egrated Circuit	16
<u>3.4</u> Digital	IC's	17
3.4.1	Gates	17
<u>3</u>	.4.1.1 The Or Gate	18
3	.4.1.2 The And Gate	18
<u>3</u>	.4.1.3 The Inverter	18
<u>3</u>	.4.1.4 The Nand, And, Nor Gates	19
<u>3</u>	.4.1.5 The Exclusive-Or Gate.	19
<u>3</u>	.4.1.6 The Flip-Flop	21
<u>3</u>	.4.1.7 The Latches	22
<u>3</u>	.4.1.8 The Binary Counter	22
<u>3.5</u> Digital	To Analog Converters	24
<u>3.5.1</u> '	The Scaled Resistor Into	
:	Summing Junction	24
<u>3.5.2</u> '	The R-2R Ladder	25
<u>3.6</u> Analog '	To Digital Conversion	26
	omputer Or Personal Computer	
(PC) IBM	-XT	27

	Page
3.7.1 The Central Processing Unit	
(CPU)	28
3.7.1.1 The Control Unit (CU).	28
3.7.1.2 The Main Memory Unit	29
3.7.1.2.1 Read Only Memor	у30
3.7.1.2.2 Random Access	
Memory	30
3.7.2 The Secondary Storage Area	31
<u>3.7.3</u> Input Devices	31
<u>3.7.4</u> Output Devices	31
3.8 The Analog To Digital, Digital To	
Analog, Digital Out And Digital In	
Card (ADA)	32
3.8.1 Digital In Signals	32
3.8.2 Digital Out Signals	34
3.8.3 Analog In Signals	35
3.8.4 Analog Out Signals	37
3.9 Stepper Motor And Its Driver Chip	38
$\underline{\textbf{3.9.1}}$ Theory Of Operation For The	
Stepper Motor	38
3.9.2 The Stepper Motor Driver Chip	
SA107	40
3.10 The Opto-Isolator	41
3.11 The Operational Amplifier	41
• Chapter 4 Test Rig	42
<u>4.1</u> Engine Generator Set	43
<u>4.1.1</u> Fuel System	43
4.1.1.1 Construction Of The	
Fuel Metering Device	44
4.1.1.2 Calibration Of The	
Fuel Metering Device	46
<u>4.1.2</u> Air System	47

	Page
4.1.2.1 Construction Of The	
Air Metering Device	47
4.1.2.2 Calibration Of The	
Air Metering Device	49
4.2 Loading Facilities	50
4.3 Recording And Control Elements	51
4.3.1 Engine Rotational Speed	
Measurements	51
4.3.1.1 The Speed Sensor	
Circuit	51
4.3.1.2 Frequency To Voltage	
Converter	55
4.3.2 Stepper Motor Driving	
Circuits	56
4.3.2.1 Stepper Motor Binary	
Number To Pulse	
Generation Board	57
4.3.2.2 Stepper Motor Drive	
Board	. 58
4.4 Micro-Computer Arrangement	61
4.4.1 The Micro-Computer	61
4.4.2 Analog To Digital And	
Digital To Analog Card	61
4.4.3 The Controller Software	61
• Chapter 5 Computer-Engine Control System	n,
Complete Description With Its	
Relevant Software	. 63
<u>5.1</u> Closed Loop Computer Software	65
$\underline{5.1.1}$ Analog Input Instruction	66
<u>5.1.2</u> Digital Out Instruction	66
$\underline{5.1.3}$ The Mathematical Operation And	
Control Instruction	67