

GENETICS STUDIES ON MATURE PLANT REACTIONS TO WHEAT RUSTS AND GRAINS QUALITY IN TETRAPLOID

By

KADRIA FAHMI HEGAZI

B.Sc. (Agric.), Cairo University, 1959 M.Sc. (Agron.), Cairo University, 1966

THESIS

Submitted in partial fulfilment of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

in

(GENETICS)

Department of Genetics

Faculty of Agriculture

Ain Shams University

1973

Approved by:

SH Descaki am Oma 54

Committee in Charge

Date 24 / 7 / 1973

العالي

5848

7.4

three daughters for their continuous encouragement and patiscoe. Thanks are extended to all those who provided help and criticism during the course of these experiments.

...00000...

I. INTRODUCTION

Wheat occupies an outstanding position smong the world major crops for its nutritional advantages. It is considered to be the essential food and protein source for millions of people in many countries. In A.R. Egypt, this crop is regarded as the most important cereal erop as it occupied in the year 1971 more than $1.3^{\rm M}$ million faddens ($4200~{\rm m}^2$), yielding more than $11.5^{\rm M}$ million ardebs annually.

The ever-increasing human population which is reaching a very dangerous level has led the research workers in the field of plant breeding and agriculture to make more efforts siming to secure a satisfactory food supply enough to cover the needs of the human population in the near future.

Wheat rusts are the most important diseases that cause pronounced losses in wheat yield and are an ever-present threat to high productivity of the crop. Breeding for rust

a Reported from the Annual Review of the Department of Agriculture Economy, dinistry of Agriculture, A.R. Egypt 1971.

resistance is of great importance to sveid great less in yield reused by these diseases which approached about 40% (Mahamed 1968), in some localities in addition to the deteriorated quality of grain produced by rusted plants causing decrease in grain weight.

the stend point of nutritive value its quantity and quality in wheat are the major factors in determining the goodness of its flour and its suitability for broad making. During the past few years, no serious attempts have been made to study the inheritance of wheet quality. Sometimes comple of certain cultivars were chemically analysed and quality characters were estimated but were not used by breaders either in the course of selection or when a crossing program is designed.

Breeding of durum wheets for resistance to stam pust and for yield and quality must be practised if improvement in this type of wheet is to keep pace with the progress being made by similar means in the herd sed spring wheets. This improvement in down wheets must be soon corried out or the flour industry will suffer. Unfortpostaly the best down caltivers are not sufficiently mediatest to the must said the resistant sections.

the manufacture of nomoline and the edible pastes, such es macroni chiefly made from durum wheats.

Ine objective of the present work is to study the mode of inheritance of field resction to stem rust and the inheritance of grain quality characters, i.e., protein content and test weight of kernel measured as the test weight per hestolitre of the yield per plant and the weight of 1000 kernels.

II. ESVIEW OF LITERATURE

1) Inheritance of Field Reaction to Stem Rust in Tetraploid Theats:

During the early period of breeding for resistance of stem rust, it was observed that einkorn, some of the durum, spelt and emmer wheats were the only source of resistance to atom rust disease.

Crosses of the emmers and during with susceptible common wheats, involved sterility and linkage between rust registance and the undesirable during and emmer characters. Registance to stem rust was found to be simply inherited in most cases. The following is a brief resume of the literature for the inheritance of resistance to stem rust in tetraploid wheats.

Hayes et al. (1920) succeeded from the cross of Iumillo (a registent durum) and Marquis (C.I. 3641) in producing the new variety Marquillo (a vulgare wheat) which was registent to a collection of atom rust races in the field. However, they could not obtain common wheats with the high registance of the durum parent. They reported a proportion of 13 susceptible plants to 3 registent. They postulated

that resistance to stem rust was partially dominant in crosses of T. Yulesro with T. dicocom. There was an apparent linkage of rust resistance and enser type of plants. However, some rust-resistant vulgare-like To plants were obtained. In crosses of vulgare with durum, susceptibility was dominant and a strong linkage was observed between rust resistance and the durum characters.

Puttick (1921) explained the reaction in the \$\mathbb{I}_2\$ generation of a cross between Marquis (vulgare) and Mindum (durum) to stem rust form 19, by a single factor plus modifiers. But one single factor did not account for the reaction of rust form 1. However, 35 out of 388 \$\mathbb{I}_2\$ plants were resistant to both forms, indicating the pessibilities of synthetic breeding for developing varieties registant to several forms of stem rust.

Waldron (1921) found that progenies from strains of Eubanka (durum) x Power (common wheat) were intermediate in their stem rust resetion. He concluded that at least two genetic factors were responsible for rust reaction.

Harmington (1925) reported on the inheritance of resistance to stem rust in the crosses of both Mindom and Kubanka No. 8 with Rentad (all dama). Mindom and

Kubanks No. 8 were susceptible, and Pented was resistant to stem rust. Some of the hybrid families were found to be more susceptible than Kubanka. The results of infecting P_3 and P_4 strains of the Mindum x Pentad cross indicated the presence of more than one factor.

Hayes et sl. (1925) concluded that the two factors which were controlling field resistance in the cross Marquis x lumillo and probably minor modifying factors, were involved also in the lines derived from Marquis x Kanred cross which were immune in the seedling stage to 11 forms of stem rust. They obtained from these crosses homosygous lines combining seedling immunity and field registance.

Hymes (1926) studied the resction to stem rust in a cross between Pederation (vulgare) and Khapli (emer) to the F₄ generation. Most of the vulgare lines segregates were either susceptible or only weakly resistant. He concluded that stem rust resistance was controlled by multiple factors.

Waldron (1926) produced the variety Cares from a cross between Marquis and Kota, a resistant Busaism durum wheat, at N. Dakota.

Asmodt (1927) studied the Amberitance of mature

plant resolich to stom rust in crosses including Stewart (durum). He concluded that stom rust resistance was controlled by multiple factors.

Clark and Smith (1928) found susceptibility to stem rust resotion to be dominant over resistance in the matureplant stage of the durum wheat cross, Modak x Kahla, with indications that at least two genetic factors were involved

McFedden (1930) crossed Yaroslav C.I. 1526 (emmer) with Marquis (vulgare). The obtained Hope and H.44, both of which were varieties of the common wheat type and were very highly resistant under field conditions not only to stem rust but also to leaf rust, bunt and loos smut.

Coulden et al. (1930) studied the reaction of 14 varieties of wheat in the seedling and mature plant stage to 16 physiologic forms of stem rust. There was good agreement in Marquis and Quality between seedling and mature plant reaction. However, there was an almost complete lack of agreement in H.44-24 and Asme (durum), the latter variety; i.o., Acme was susceptible to all the 16 forms in the seedling stage and resistant to all of them in the mature stage. Hope and Pentad (durum) were very similar to Acme and H.44-24 while Reward, Kota and Marquillo gave only moderate

indication of mature plant remistance. They concluded that one single factor controlled the resistance in them.

Macindos (1931) crossod several resistant Australian wheats with susceptible varieties, and found the field reaction to a large number of races in the United States to depend on a single factor pair difference where resistant parents, such as Kenyu - Gular, Gase (durum), Bobing and Egypt W.A., exhibited physiologic resistance to race 34, the prevailing race, in Australia. There was a close association between the seedling reaction to this race and field reaction to a group of races. In most cases inheritance was relatively simple and was apparently controlled by the same factor or factors.

Smith and Clark (1933) stated that the inheritance of stem rust resction in three durum crosses behaved in a quantitative manner. The different degrees of resistance of the Pentad and Modak parents were inherited as a recessive character, and susceptibility was partially dominant over resistance. However, the cross Modak x Alkrona showed the presence of two major game difference between the two persents.

Ansenue (1934) studied the inheritance of stem rust reaction in the omes Hope (Yezoglav comer) with Marquille (vulgare). Mifty families segregated in the P3 in a ratio of 1:3, eight in a 1:15 ratio, and nine in a 9:7 ratio. He pointed out that these shnormal ratios may be due to abnormal chromosomal behaviour of Marquillo.

Heyes et al. (1934) developed the highly registent variety Thatcher from a double cross involving a sister selection of Marquillo and a selection from a cross between Marquis x Kanred (winter wheat). Thatcher (C.I. 10003) carried mature plant registence from Eumillo (durum wheat), and physiologic registence from Kanred.

Clark and Smith (1935) studied the inheritance of the three stem-rust reactions (near-immunity, resistance, and susceptibility) in three crosses from a Yaroslav emmer x Marquis wheat. The crosses were C-6-I-2 x Marquis. C-6-2-I x Marquis and C-10-35-I x Marquis. They showed that major factors principally controlled the inheritance of stem rust reaction. No additional minor or modifying factors could be directly established from the results of those crosses.

Hayes et al. (1936) reported in P3 progenies of crosses between H.44 with double cross No. II-21-28 and Kote (Russian durum) x Marquis No. II-19-167, that mature plant remistance of H.44 appeared to depend on one single

genetic factor difference. The moderate plant registance of lines No. 11-19-167 and II-21-26 appeared to be dependent upon factors not ellelomorphic to those determining mature plant registance of H.44 type. Since susceptible lines were obtained in P3 generation, there was indication that more than one single gene pair was necessary to explain mature plant registance.

Pan (1940) studied mature plant resistance in crosses involving selections of Marquis x (H.44, III-31-7) (vulgare) and Pentad (durum)x (Marquis, III-34-I), with the resistant parents; (Min-Double cross II-21-80), Hope and H.44. Resistance to stem rust appeared to be dominant to semi-resistance. Marquis x H-44 cross involved a single dominant gene which was allelomorphic to that carried by Hope and H-44.

Waddell (1940) showed in three intra-durum crosses involving Iumillo that all lines resistant in the greenhouse to rece 21 of <u>Puccinia graninia tritici</u> proved to be resistant in the field, but a large number of F3 lines were susceptible as seedlings and resistant as mature plants. However increasing susceptibility in seedling stage usually indicated the same trend in the mature plant; this would help to eliminate susceptible lines in the field in that case. He

concluded all that limitle apparently possessed a factor or factors some of which seem to be for mature resistance, while others for resistance at both stages.

Ausemis et al. (1946) reviewed more than 60 papers on the inheritance of resistance to stem rust; in <u>Triticum</u> durum Desf., <u>T. vulgare</u> and emmer group wheat. Nost of these studies indicated that resistance was inherited as monogenic character, yet digenic, trigenic and even multigenic ratios were reported. Instances of duplicate, inhibiting, and complementary types of gene actions had also been found.

Allard and Shands (1951) selected two lines C.I.12632 and C.I.12633 from crosses between Hard Red spring and I.

timopheevi P.I.94761 which showed a high degree of mature plant resistance to stem rust, leaf rust and mildew. Rust resistance in crosses between them and Reward depended on two dominant linked genes with 23.7% and 16.9% crossing over in the two hybrids at Madison and 20% at Davis, probably due to differential reaction to races of rust. However, later in (1954), they reported that stem rust resistance in crosses between these two selections with Reward and Marquis was governed by duplicate linked genes with a recombination value of 14.78 ± 1.78%.

Koo and Ausemus (1951) studied the inheritance of

reaction to stem rust in crossos of Timstein, (derived from I. timopheevi I Steinwood "a vulgare" made by (Prinham in Australia), with Thatcher, Newthatch, and Mids in both seedling and field conditions. In the seedling stage, the reaction to a particular race for each cross was controlled by a single genetic factor puir, and resistance was dominant in all of the three crosses. Timstein was found to carry a factor pair of resistance to all races except race 15 B, to which it was susceptible, while the varieties Thatcher and Newthatch each carried a factor pair for high resistance to six out of twenty five races used. This high resistance was epistatic to the resistance contributed by Timstein. The physiologic resistance of Timstein to twenty races could be combined with the field resistance of either Thatcher, Newthatch, or Mids in these crosses.

Hayes et al. (1955) stated that the mode of inheritance of reaction of wheat varieties to an individual race or a group of races had been found to be relatively simple. However, they added the total number of genes that interacted with these large number of races in a certain locality is very great. Thus, the problem of breeding a single variety resistant to all these races seemed to be difficult. This difficulty was solved by the discovery of several varieties