

STUDIES ON SOME FUN AL CAUSING ROOT-ROT TO PRASROLUS YULGRIS

Ву

Abd El-Ruhman Abd El-Makquud Farehat
B.Sc. (Ain Shame Univ.) 1964

Thesis

Submitted in partial Fulfilment for the Requirements of the Degree

of

MASTER OF SCIENCE

im

Plant Pathology

Plant Pathology Department
Faculty of Agriculture
Aim Shams University

1970

635.65

APPROVAL SHELT

Thesis Approved by:

How A. Maland

Date: /8 /7/1970.

ACKNOVLE DGMENT

The investigation forming the subject of this thesis was carried out under the supervision of Dr. A.R. Sirry, Professor of Plant Pathology, Dr. Regazy, M.F., Lecturer of Plant Pathology, Plant Pathology Dept., Fac. of Agric., Ain Shams Univ.

The writer would like to express his deep thanks for the advice and guidance offered by them throughout the investigation.

Thanks are also due to Mr. Kamel, B.B., Manager of Vegetable Diseases Dept., Min. of Agric. Guiza.

Gratitude to Dr. Fadl, F.A., investigator in Plant Pathology Dept., Min. of Agric. Guiza.

Gratefulness to all members of Plant Pathology Dept., Fac. of Agric., Ain Shams Univ. and the Plant Pathology Unit of Min. of Agric., for supplying with all facilities during the investigation.

CONTENTS

	Page
INTRODUCTION	1
REVIEW OF LITERATURE	3
MATERIALS AND METHODS	16
I. Isolation of the causal organisms	16
II. Pathogenicity test	16
III. Physiological studies	18
1. Effect of different media	18
2. Effect of temperature	50
3. Effect of relative humidity	20
4. Effect of pli values	20
5. Effect of fungicides	21
IV. Pot experiments	22
1. Effect of varietal resistance	23
2. Effect of fertilizers	23
3. Effect of depth of sowing	24
4. Effect of seed dressing on:	
a. Disease severity	
b. Fresh, dry weight and dry matter	
percentage	
c. Stem length	
d. Root length	
e. No. of leaves.	
5 Refert of soil type	25

	Page
4. Effect of seed dressing on:	42
a. Disease severity	42
b. Fresh, dry weight and dry matter	
percentage	44
c. Stem length	
d. Root length	
e. No. of leaves	
5. Effect of soil type	46
6. Effect of watering	48
7. Effect of organic manuring	50
V. Field experiments.	51
1. Effect of varietal resistance	51
2. Effect of irrigation	52
3. Effect of fertilisers	53
4. Effect of seed dressings	54
a. Different fungicides	
b. Different rates of fungicides	
5. Effect of organic matter	56
	59
DISCUSSION	
SUMMARY	67
REFERENCES	71
ARABIC SUNGARY.	

Introduction.

Dry and snapbeans (Phaseolus vulgaris L.) is one of the most important economic vegetable crops in U.A.R. The total cultivated area increased during the last year, as it reached about 21632 feddans in 1968 yielding 47175 tons of dry and snapbeans (Department of Agricultural Economic Statistics, April. 1969 in Arabic).

The U.A.R. government is pressing hard to increase the production of bean to meet the increasing demand of the population and to increase the tonnage of export in purpose of the hard currency. As regards bean export, it ranks the second wegetable export crop after potatoes. The exported tonnage was 3210 tons in 1968 and 3963 tons in 1969, the reciprocal cash out put was equal to L.E. 401,000 and 461,000 respectively, (The General Egyptian Organization for Trade 1970).

It is worthy noting that the canning bean industries are important especially in wartime.

Several diseases are known to attack beans such as rust and root-rots.

It was noticed lately, that the damage due to root-rot diseases on beams increased considerably in the last few years in U.A.R., (Hassanein 1967).

The problem of root-rot of bean had received a considerable attention in many countries.

The present investigation represents the results of experiments designed to illustrate the main pathogens of root-rot. It also includes some physiological, greenhouse, and field studies on the disease and its causal organism as follows:

- Physiological studies initiated to study the effect of different media, temperatures, relative humidities, pH values, and fungicides.
- Greenhouse studies on the effect of varietal resistance, fertilizers, depth of sowing, fungicides, soil type, watering, and organic matter.
- 3. Field studies were designed to study the effect of varietal resistance, irrigation, fertilizers, seed dressing, and organic matter on the disease.

REVIEW OF LITERATURE

Causel Organisms:

Atlensa (1927), found that <u>Scienotium rolfsii</u> was the most serious pathogen on french-bean. This finding was also reported by Pajardo and Mendosa (1935), and Westcott (1960).

Other workers, on the otherhand, reported Rhisoctonia solanias the main pathogen which causes root-rot to beans and other plants.

Among these workers, Anon. (1943), Person (1944), Houston (1945),

Duggar and Stwart (1945), Brayon (1945), Schnathorst et al. (1953),

Andersen and Huber (1962), Flantje (1964), Crosier et al. (1957),

and Maciejowska and Boguslawski (1968). Both Rhisoctonia solani and

Sclarotium rolfsii were reported by Borsini and Picco (1949), and

Luttrel and Garren (1952).

Anon. (1941), reported that <u>Fuserium spp.</u>, <u>Rhizoctonia spp.</u>,

<u>Macrophosina phaseoli</u> and <u>Sclerotium rolfsii</u> caused various mortality

percentages on beans.

Anon. (1944), indicated that the roots and stems of snaphaans were mainly rotted by <u>Sclerotium rolfsii</u>, <u>Macrophomina phaseoli</u>, and <u>Corticium solani</u>.

Ancs.(1945), reported that snap-bean root-rot was attributed to <u>Rhizoctonia solani</u> and <u>Macrophomina phaseoli</u>.

Meiners (1950), stated that Pythium butteri caused Pythium wilt on hear varieties in Southern Idaho.

Anen. (1955), reported that the principal pathogen equaling rect-rot on legence was considered to be a race of <u>Function</u>

oxymetry f. pini. It was added that <u>Macrophonine phaseelis</u>.

Corticium solani. and <u>Function solani</u> were occasionally associated with <u>Function exymetry</u>.

Lopes (1958), stated that <u>Scientian</u> sp., <u>Pasarian</u> sp., and <u>Phisostenia</u> up., were found to be the most prevalent fungi associated with seed decay and damping-off of beam in CanCa valley.

Anydor and others (1959), recorded that root-rot of berkeley bean in the Selines valley was caused by <u>Fuserius solani</u>?. <u>Phenocli</u>.

2. (<u>Gertinius</u>) <u>solani</u>, and <u>Thielevioreis hasicols</u>.

Proven (1961), mentioned that root rots of beans caused by Prantium wo.. Scientium religii, and Phinactonia soluni were important in the central coastal region of Peru.

Harper (1964), isolated Pythium spp., and Pusarium spp. from dispased roots of peas.

Thirley (1965), found that hypocotyl rot of bean was incited by <u>Pasarism salinif</u>, <u>phaseoli</u>, <u>Reissotonia salani</u>, and <u>Pythian</u> sup... in different degrees of infection.

pharming and Regadorn (1966), recorded Phisociania polenia and Prihims sup. as causers of rect-rot of protesting bean in

mortality for bean in both materally and artificially infested soil.

Ballantyse (1968), recorded <u>Pasarius solani</u>. <u>Rhisectonia</u> sp... <u>Prihius</u> spp., and <u>Relevotius religii</u> as causers for summer death of bean.

Physiological Studies:

Medias

Asheur and El-Kady (1958), reported that <u>Thisostonic solani</u>
gave the highest amount of mycelium on Crapok's and glucose-peptone
medium.

Sirry and Rushdi (1962), found that some isolates of <u>Mhiscatenia solani</u> gave the best growth on Petate agar, other isolates gave the best growth on Caspek's and Potato media.

Lauritson and Whitney (1933), found that the optimum temperature of <u>Phinostonia</u> malani extends from 24°C to 32°C.

Le clerge (1939) and Person (1944), reported that the eptimum temperature of <u>Maintennia selami</u> ranged from 25°C - 30°C seconding to the isolate.

Houston (1946), indicated that the optimum for <u>Phinostonia</u> soluni hithm was 26°C, while its maximum was 33°C.

Kandrick (1951), reported that the optimen for the growth is culture of <u>Missistenia scieni</u>, isolated from various districts in California, varied from 64 to 91°F. (17.5 - 32°C.)

sp., and other bycelia sterilia grew well at 16-25°C.

Baker and Waker (1962), found that the optimum temperature for the mycelial growth of Wisconsin isolate of <u>Pellicularia</u>

<u>filematosa</u> was 24°C while it was 28°C for north Carolina isolate.

Sirry and Rushdi (1962), reported that isolates of Rhisoctonia solani gave the best growth at 25°C.

Raffray and Sinclair (1965), found that the optimum temperature for the growth of Rhizoctomia solani was 24°C.

Relative Humidity:

Abd-El-Salam (1933), indicated that the optimum relative humidity of Rhisoctonia solani was $100 \, \mu$ at 28° C.

Ashour and El-Kady (1958) & Ashour and I.F. Gamal El-Din (1961), found that the optimum growth of <u>Rhizoctonia solani</u> was between 92.9 to 100 % R.H.

pH value:

El-Aresi (1957), reported that the optimum pH value for Rhizoctonia solani was 5.9

Ashour and El-Kady (1958), found that the optimum pil value was about 4.2 for <u>Phisoctomia solani</u>.

Ashour and Gamal El-Din (1961) mentioned that the range of pH value was 3.6 - 11.4 for <u>Rhisostonia solani</u>.

Ress (1960), reported that <u>Rhizoctonia</u> sp., <u>Rhizoctonia</u> solani, and other mycelia sterilia grew well at pH 5.8.

Sirry and Rushdi (1962), declared that some isolates of Phizoctonia solani grew at a wide pH range i.e., from 5.2 to 7.5. _ 7 -

Environmental Conditions:

Variotal resistance:

Borgini and Picco (1949), stated that "Regine atla di Mensummano" was the most telerant for <u>Rhigoctonia solani</u> and <u>Seleratium rolfsii</u> root rots among five bean varieties tested.

Saumeyer and Thomas (1953), stated that no bean varieties were resistant to Seleretium root-rot.

Amon. (1956), stated that sems Mexican bean varieties were highly resistant to <u>Fusarium</u> root-rot.

Milton and Cook (1963), mentioned the been variety "Pinto" as the most susceptible to pre-emergence damping-off, small white been variety as intermediate, and "H 203" bean variety as the most resistant one.

Kimati and Massarenhas (1967), found that the varieties

Creme, Pintado, Feijao 60, and Preto G-1 were tolerant of root-rot
esused by <u>Fusarina</u> sp., <u>Rhisoctonia solani</u>, and <u>Sclerotium rolfsii</u>.

McCLEAN and others (1968), found that in snapbean 12 breeding lines out of 600 showed resistance to <u>Rhizoctonia solani</u>, they added that the most resistant line had dark seed coats and woody hypocotyls or small cotyledons which abscissed early.

Prasad and Weigle (1969), stated that the varieties

Venezuela 54, pl 165426, and Valentine had the highest resistance

to <u>Rhizactoria selani</u>, and they attributed the resistance to the

law amine acid content and the production of secondary substances

in resistant hosts.

Mineral fertilisers:

Anderson (1939), found that the supplemental soil nitrogen increased root-ret disease on snapbeans.

Bleir (1943), noticed that the addition of mitrogen to the soil had not increased the growth of <u>Minostonia solani</u>.

Anen. (1944), reported that super phosphate fertilizer reduced the loss due to <u>Phisoctonia solani</u> root-rot of bean.

Typer (1948) and Papawisas (1963), found that high mitrogen application decreased numbers of bean rhizosphere antagonists.

Dubey (1958), mentioned that there was a megative correlation between "H" content of soil and the disease incidence, and a positive one between the latter and the "k" content.

Devey and Papavisas (1960), stated that the supplementary nitrogen in the forms of NH4NO3 & Uranite was effective in reducing
<a hre

Tanfaga and Williams (1965), claimed that the total numbers of fungi were unaffected by phosphorous and Potassium fertilization, they added that the total and proportions of antagonists were increased by phosphorous and petassic fertilization. They also found that nitrogen fertilization increased the total numbers of fungi.

Dapth of Soving!

Wilson (1955), decided that bean rest-rot caused by <u>Scleretium rolfsii</u> occurred near the soil line.

Enrice and Krag (1961), recorded that the rate of postemergence damping-off was less at shallow sowing (1-2 cm.). They added that emergence decreased and post-emergence damping-off was enhanced when seeds were deeply sown.

Crossan (1965) & Wester and Goth (1965), declared that seeding of snapbeen at 3-inch depth consistently resulted in a greater amount of pre-emergence decay and serve root rot than seeding at 1-inch depth.

Pangialdes:

Young (1940), stated that seedtreatment with Coresan or Red copper oxide gave good control of Reinogtonia solani root-rot.

Anon. (1941), explained that seedtreatment with Yellow Cuprocide or Spergon prevented pre-emergence seed decay and damping-eff caused by <u>Phinoctonia solani</u>, <u>Pusarina spp</u>, <u>Sclaratina</u> <u>bataticola</u>, and <u>Sclaratina</u> rolfsii.

Busha (1942), reported that the Sulphur Compound 50 %, and MYD prevented retting and stimulation of pre-, and post-emergence damping-off of ground nut.

Anon. (1944), reported that seeddressing by Agrosan or Caresan reduced Rhizostenia solani losses on broad bean.