AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING IRRIGATION AND HYDRAULICS DEPARTMENT

67/4

POLLUTION IN GROUNDWATER

 $\mathbf{B}\mathbf{y}$

EHAB MOSTAFA FATOUH ABDEL MAKSOUD B.Sc. CIVIL ENGINEERING, AIN SHAMS UNIVERSITY, 1991.

91759

A Thesis submitted to
IRRIGATION AND HYDRAULICS DEPARTMENT,
FACULTY OF ENGINEERING,
AIN SHAMS UNIVERSITY.

FOR

The partial fulfillment of the Degree of Master of Science in Civil Engineering,

CAIRO - EGYPT. 1994

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING CIVIL ENGINEERING IRRIGATION AND HYDRAULICS

POLLUTION IN GROUNDWATER

A THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE IN CIVIL ENGINEERING IRRIGATION & HYDRAULICS

BYENG. EHAB MOSTAFA FATOUH ABDEL MAKSOUD B.Sc. CIVIL ENGINEERING - AIN SHAMS UNIVERSITY IRRIGATION AND HYDRAULICS DEPARTMENT

SUPERVISED BY

PROF. Dr. MOSTAFA MOHAMED SOLIMAN PROFESSOR OF IRRIGATION AND DRAINAGE IRRIGATION AND HYDRAULICS DEPARTMENT FACULTY OF ENGINEERING AIN SHAMS UNIVERSITY

Dr. AHMED ALI ALI HASSEN Dr. MAHMOUD SAMY ABDEL SALAM MOHAMED ASSISTANT PROFESSOR IRRIGATION AND HYDRAULICS FACULTY OF ENGINEERING AIN SHAMS UNIVERSITY

ASSISTANT PROFESSOR IRRIGATION AND HYDRAULICS FACULTY OF ENGINEERING AIN SHAMS UNIVERSITY

CAIRO, EGYPT - 1994

بسم الله الرحمن الرحيم

" سبحانك لا علم لنا الا ما علمتنا انك انت العليم الحكيم "

صدق الله العظيه

سورة البقرة آية ٣٢

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING IRRIGATION AND HYDRAULICS DEPARTMENT

TO PROV.

APPROVAL SHEET

POLLUTION IN GROUNDWATER

By
EHAB MOSTAFA FATOUH ABDEL MAKSOUD
B.Sc. CIVIL ENGINEERING,
AIN SHAMS UNIVERSITY, 1991.

This thesis for the M.Sc. degree had been approved by:

Name	Signature
Prof. Dr. KAMAL HEFNY HUSSEIN HEFNY Prof. Institute of Groundwater.	Hefry
Prof. Dr. Abdel Mohsen EL Mongy EL Mongy Prof of Harbor Eng. and Inland Navigation.	J. Jears
Prof. Dr. Mostafa Mohamed Soliman Prof. of Irrigation and Drainage	Mosa M Slima

ACKNOWLEDGEMENT

THE AUTHOR WISHES TO EXPRESS HIS DEEP GRATITUDE TO PROF.

Dr. MOSTAFA MOHAMED SOLIMAN, PROFESSOR OF IRRIGATION AND

DRAINAGE, FOR HIS KIND SUPERVISION AND SUGGESTIONS, WHICH

WERE OF INVALUABLE HELP IN THE COURSE OF THIS THESIS.

THE AUTHOR IS DEEPLY INDEBTED TO Dr. AHMED ALI ALI
HASSEN ASSISTANT PROFESSOR OF IRRIGATION AND HYDRAULICS, FOR
HIS CONSTANT SUPERVISION, PLANNING, GENEROUS SUPPORT AND
CONSTRUCTIVE CRITICISM THROUGHOUT THIS INVESTIGATIONS, WHICH
MADE THE COMPLETION OF THIS WORK POSSIBLE.

THE AUTHOR WISHES TO EXTEND HIS SINCERE THANKS TO Dr.

MAHMOUD SAMY ABDEL SALAM MOHAMED ASSISTANT PROFESSOR OF

IRRIGATION AND HYDRAULICS, FOR HIS CONSTRUCTIVE DIRECTIONS,

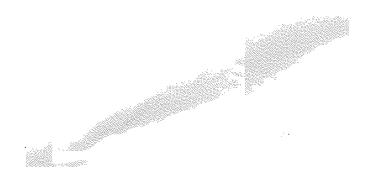
AND KIND ENCOURAGEMENTS.

ALSO THE AUTHOR WOULD LIKE TO EXPRESS HIS GRATITUDE TO Dr. MOHAMED NOUR EL DIN , AND Dr. NAGI ALI ALI HASSEN FOR THEIR COOPERATION AND ADVICES.

FINALLY, GRATITUDE FOR ALL TECHNICAL STAFF OF IRRIGATION AND HYDRAULICS LABORATORY, Mr. BEHERY MOHHAMED HASSEN, Mr. IBRAHIM ABDEL GHAFFAR, Mr. ABDEL MAGEED RABIAI, Mr. WAGEH ABDEL FATAH AND Mr. MOSAD, FACULTY OF ENGINEERING, AIN SHAMS UNIVERSITY, FOR THEIR HELP AND COOPERATION DURING THE EXPERIMENTAL WORK.

STATEMENT

This dissertation is submitted to Ain Shams University for the degree of master of science in Civil Engineering.


The work included in this thesis was carried out by the author in the department of Irrigation and Hydraulics, Ain Shams University, From November 1992 to June 1994.

No part of this thesis has been submitted for a degree or qualification at any other University or Institution.

Date : / / 1994

Signature :

Name : EHAB MOSTAFA FATOUH ABDEL MAKSOUD

VITA

NAME : EHAB MOSTAFA FATOUH ABDEL MAKSOUD

DATE OF BIRTH : 1 / 6 / 1969

SCIENTIFIC DEGREE : B.Sc. IN CIVIL ENGINEERING

(IRRIGATION AND HYDRAULICS)

DISTINCTION WITH HONOUR

GRADUATED FROM : AIN SHAMS UNIVERSITY, FACULTY OF

ENGINEERING

DATE OF GRADUATION : JUNE 1991

CURRENT JOB : DEMONSTRATOR IN IRRIGATION AND

HYDRAULICS DEPARTMENT, FACULTY OF

ENGINEERING, AIN SHAMS UNIVERSITY.

SIGNATURE:

DATE :

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

CIVIL ENGINEERING
IRRIGATION AND HYDRAULICS

SUMMARY OF THESIS SUBMITTED BY ENG: EHAB MOSTAFA FATOUH
FOR MASTERS DEGREE IN CIVIL ENGINEERING

POLLUTION IN GROUNDWATER

UNDER SUPERVISION OF
PROF. Dr. MOSTAFA MOHAMED SOLIMAN
PROFESSOR OF CIVIL ENGINEERING

Dr. AHMED ALI ALI HASSEN Dr.MAHMOUD SAMY ABDEL SALAM MOHAMED ASSISTANT PROF. OF CIVIL ENG. ASSISTANT PROF. OF CIVIL ENG.

Groundwater constitutes an important component of many water resources; supplying for domestic use, industry, and agriculture, etc. So, we have to protect it from the pollution which has many sources.

In addition to the velocity of groundwater, the dispersion coefficient is the responsible factor that affects the spread of a pollutant in an aquifer. So, the aim of this research is to measure the dispersion coefficient experimentally and compare its value analytically and numerically.

A horizontal viscous flow model "Hele-Shaw" was designed and utilized successfully to carry out many experiments, and

the experimental results were compared with the analytical and numerical solutions.

It was concluded that the horizontal "Hele-Shaw" model is capable to simulate successfully the groundwater pollution problems. The comparisons showed that the analytical value of the dispersivity is 30% higher than the experimental value, whereas the numerical one is hundred times as much as that obtained experimentally.

Furthermore, the effect of the ratio between the longitudinal dispersivity and the transversal dispersivity on the contaminant spreading was investigated.

It was recommended to use another technique for measuring the concentration in the laboratory, and to improve the used "Hele-Shaw" model in order to simulate more different groundwater flow and pollution problems.

PROF.	Dr.	MOS:	rafa	MOHM	ED SOL	IMAN	1	• • •	• •	٠.	 •	 • •	٠.	•	 ٠	 •	•
Dr. AH	IMED	ALI	ALI	HASSI	en	• • • •					 • .	 		•			•
Dr. MA	HMOU	D SI	YMY	ABDEL	SALAM	мон	IAMEI	o			 	 					•

TABLE OF CONTENTS

LIST OF FIGU	RESI
LIST OF PLAT	ESviii
JIST OF TABL	ESXII
SYMBOLS	xiii
	₩ ±
CHAPTER (I):	INTRODUCTION1
[.1	GENERAL1
.2	MAIN SOURCES OF GROUNDWATER POLLUTION2
.3	RESEARCH OBJECTIVES3
CHAPTER (II)	: LITERATURE REVIEW4
I.1	GENERAL4
1.2	THE ANALYTICAL SOLUTIONS5
I.3	THE NUMERICAL SOLUTIONS
I.4	THE EXPERIMENTAL METHODS24
HAPTER (III)): MATHEMATICAL APPROACH32
II.1	GENERAL32
II.2	GROUNDWATER FLOW IN POROUS MEDIA32
11.2.1	DARCY'S LAW34
11.2.2	DARCY'S LAW IN THREE DIMENSIONS35
II.3	THE CONTINUITY EQUATION36
II.4	CONTAMINATED TRANSPORT IN POROUS MEDIUM39
II.4.1	THE CONSERVATIVE MECHANISMS OF SOLUTE
	TANSPORT40
II.4.1.1	CONVECTION40
11.4.1.2	HYDRODYNAMIC DISPERSION41

III.4.1.2.1	MECHANICAL DISPERSION42
III.4.1.2.2	MOLECULAR DIFFUSION44
III.4.2	THE NON-CONSERVATIVE MECHANISMS OF SOLUTE
	TRANSPORT45
III.4.2.1	DECAY45
III.4.2.2	ADSORPTION45
III.4.2.3	ABSORPTION46
III.4.2.4	PRECIPITATION, CO-PRECIPITATION, AND
	DISSOLUTION47
III.5	GENERAL EQUATION FOR A NONCONSERVATIVE SOLUTE
	TRANSPORT SYSTEM47
III.6	INITIAL AND BOUNDARY CONDITIONS48
III.6.1	INITIAL CONDITIONS48
III.6.2	BOUNDARY CONDITIONS49
III.6.2.1	PRESCRIBED CONCENTRATION49
III.6.2.2	NEUMAN BOUNDARY CONDITION49
III.6.2.3	COUCHY BOUNDARY CONDITION50
III.7	TWO-DIMENSIONAL SOLUTE TRANSPORT
	PROBLEMS50
III.7.1	SOLUTION OF THE TWO-DIMENSIONAL SOLUTE
	TRANSPORT EQUATION51
CHAPTER (IV):	EXPERIMENTAL WORK53
IV.1	GENERAL53
IV.2	PRINCIPLE OF THE HELE-SHAW MODEL54
IV.3	ADVANTAGES, DISADVANTAGES, AND ERRORS55
IV.4	SIMULATION BETWEEN MODEL AND PROTOTYPE56

2 % 300

IV.5	DESCRIPTION OF THE HORIZONTAL "HELE-SHAW"
	MODEL60
IV.6	PREPARING THE MODEL FOR THE EXPERIMENTS61
IV.7	EXPERIMENT NO (1)
IV.8	EXPERIMENT NO (2)66
IV.9	EXPERIMENT NO (3)67
CHAPTER (V):	RESULTS AND ANALYSIS114
V.1	GENERAL114
V.2	CASES STUDY OF TWO-DIMENSIONAL SOLUTE
	TRANSPORT PROBLEMS114
V.2.1	CASE STUDY NO 1115
V.2.2	CASE STUDY NO 2121
V.2.3	CASE STUDY NO 3
V.2.4	CASE STUDY NO 4
V.3	MEASURING OF DISPERSIVITY IN THE
	LABORATORY138
V.4	COMPARISON BETWEEN EXPERIMENTAL RESULTS AND
	ANALYTICAL SOLUTIONS140
V.5	COMPARISON BETWEEN EXPERIMENTAL RESULTS AND
	NUMERICAL SOLUTIONS140
CHAPTER (VI):	CONCLUSIONS AND RECOMMENDATIONS154
JI.1	GENERAL154
JI.2	CONCLUSIONS154
JI.3	RECOMMENDATIONS155
	REFERENCES
	ARABIC SUMMARY162

LIST OF FIGURES

FIG. (2.1)	Longitudinal dispersion of a tracer passing
	through a column of porous medium
PIG. (2.2)	Migration of a reactive contaminant through
	a shallow groundwater flow system19
FIG. (2.3)	Dispersion of a contaminant during transport
	in a shallow groundwater flow system20
FIG. (2.4)	Effect of the distribution coefficient on
	contaminant retardation during transport in a
	shallow groundwater flow system21
FIG. (2.5)	Horizontal viscous flow model (Santing, 1958)
	25
FIG. (2.6)	Coefficients of longitudinal and transversal
	dispersion for transport in a homogeneous
	sandstone at various flow rates27
FIG. (2.7)	Relation between peclet number and the ratio
	of the longitudinal dispersion coefficient of
	molecular diffusion in a uniform-sized sand
	grains27
FIG. (3.1)	Schematic cross section showing the occurrence
	of groundwater33
FIG. (3.2)	Elemental control volume for flow through
	porous media36
FIG. (3.3)	Control volume for solute transport41
FIG. (3.4)	Schematic representation of the dilution
	process caused by mechanical dispersion in
	granular porous media42

FIG. (3.5)	Process of dispersion on a microscopic
	scale42
FIG. (4.1)	Description of the horizontal viscous flow
	model "Hele-Shaw"63
FIG. (4.2)	Description of the horizontal viscous flow
	model "Hele-Shaw"64
FIG. (4.3)	Experiment No (1): Contaminant concentration
	distribution after 30 sec
FIG. (4.4)	Experiment No (1): Contaminant concentration
	distribution after 60 sec76
FIG. (4.5)	Experiment No (1): Contaminant concentration
	distribution after 90 sec77
FIG. (4.6)	Experiment No (1): Contaminant concentration
	distribution after 120 sec78
FIG. (4.7)	Experiment No (1): Contaminant concentration
	distribution after 150 sec
FIG. (4.8)	Experiment No (1): Contaminant concentration
	distribution after 180 sec80
FIG. (4.9)	Experiment No (1): Contaminant concentration
	distribution after 210 sec81
FIG. (4.10)	Experiment No (1): Contaminant concentration
	distribution after 240 sec82
FIG. (4.11)	Experiment No (1): Contaminant concentration
	distribution after 300 sec83
FIG. (4.12)	Experiment No (1): Contaminant concentration
	distribution after 360 sec84
FIG. (4.13)	Experiment No (1): Contaminant concentration
	distribution after 420 sec