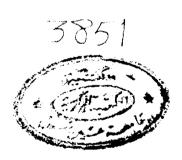

STUDIES ON DOWNY MILDEW DISEASE OF ONION IN U.A.R.


 $\mathtt{B}\mathbf{y}$

Ibrahim Sadek Ahmed Elewa

Thesis Submitted in Partial Fulfilment of the Requirements for

in Plant Pathology

Ain Shams University Faculty of Agriculture Plant Pathology Dept

1970

APPROVAL SHEET

This Thesis for the Ph.D. Degree has been Approved by:

A.A. Moursi

Date: / / 1970

...00000...

ACKNOWLEDGMENT

This work was carried out in the Plant Pathology Dept., Faculty of Agric., Ain Shams University, under the supervision and direction of Prof. Dr. W.A. Ashour, Professor of Plant Pathology; Prof. Dr. A.R. Sirry, Professor of Plant Pathology and Dr. A. Raafat, Associate Professor of Plant Physiology, in the same department.

The writer wishes to express his deepest gratitude to them for suggesting the problem, supervision, keeping interest, progressive criticism and encouragement throughout the whole work.

...00000...

CONTENTS

	Page
INTRODUCTION	1
REVIEW OF LITERATURE	3
MATERIALS AND METHODS	28
A. Field Experiments	28
I. Effect of combinations between N. P and K fertilizers	29 30 32
B. Laboratory Experiments	33
I. Respiration experiment	33 34
a. Sampling	34 35
EXPERIMENTAL RESULTS	37
A. Effect of Combinations between N, P and K Fertilizers	3 7
1. Disease severity 2. Yield 3. Dry matter content 4. Nitrogen content 5. Phosphorus content 6. Potassium content 7. Total carbohydrate content	37 42 46 68 80 95 109
B. Seasonal Changes in Growth and Chemical Composition of Onion	118
1. Dry matter content 2. Nitrogen content 3. Phosphorus content 4. Potassium content 5. Total carbohydrate content	118 122 125 127

	Page
C. Effect of Spraying with different Fungicides on:	
1. Disease severity 2. Yield 3. Dry matter content 4. Nitrogen content 5. Phosphorus content 6. Potassium content	133 135 137 143 152 158
D. Effect of the Disease and Spraying with Dithane Z-78 on the Respiration Rate of Onion Leaves	167
E. Effect of Distance between Plants on the Diseese Severity and Yield of Onion	170
DISCUSSION	173
SUMMARY	197
REFERENCES	210
ARABIC SUMMARY.	

...00000...

INTRODUCTION

Onion represents one of major cropsin U.A.R. It ranks nearly the first among other vegetable crops as far as exportation is concerned.

The downy mildew disease of onion caused by Peronospora destructor Berk. is one of the most deleterious It affects the yield and the quality of seeds diseases. and bulbs. Severe attack by the disease usually occurs in humid conditions. Thus, it is supposed to cause great losses in the Delta. Moreoevr, this disease was also observed by the writer in Upper Egypt. Infection usually results in the death of the diseased tissues. If the relative humidity is high in the field, the disese spreads quickly in the whole field and causes great loss in bulb Serious losses always occur when the attacked crop vield. is used for seed production. In U.A.R. the pathogen undergoes an over-summoring period in the bulbs in the form of resting mycelium or as cospores in plant residues. present investigation was planned to study the effect of NPK fertilizers either single or in combination at different levels on the disease severity, growth and yield was studied. This study was carried out in two seasons, namely 1967 and 1969, in the case of bulb and seed production. The effect of the disease on the plant growth under all fertilizers treatments was also investigated on different plant parts. Moreover, a comparative study was made between diseased and healthy foliage with respect to chemical composition under all fertilizer treatments.

The effect of spraying with some carbamate fungicides which were recommended to prevent the disease was investigated under field conditions. The effect of these fungicides on disease severity, yield and chemical composition of both the healthy and the diseased parts of the plant was also studied. Moreoevr, an experiment was conducted to study the effect of one of these fungicides (Dithane Z-78) on the rate of respiration of the healthy and diseased parts of the plant.

REVIEW OF LITERATURE

Peronospora destructor Berk., the causal organism.

Berkeley (1841); Trelease (1884); Cook (1932);
Heald (1943); Lavallee, Simmonds and Tims

(1947); Moore (1949); Anon (1950b); Bazan de Segura
and Nelson (1951); Agati et al. (1954); Doepel, Hardie

(1955); Kefford, Jones (1956); Berry, Davis, Woolliams
and Zanardi (1957); Wheeler (1959); Van Doorn (1960);

Khristodorov (1962); Jovicević and Kazakova (1964),
stated that the fungus Peronospora destructor is the
causal organism of downy mildew disease of onion. In the
Governorates where onion is grown for seeds or bulbs, the
disease is widespread and very destructive.

Effect of fertilizers on disease severity:

Tico (1952) stated that sources of plant nutrients for onions as $(NH_4)_2SO_4$, $NaNO_3$, superphosphate and K_2SO_4 produced bulbs of high keeping qualities, and protected the plant from fungal diseases.

Geard (1959) got promising control of downy mildew of onion by the avoidance of excessive nitrogen application.

_ 4 -Van Doorn (1960) found that restriction of mitrogenous fertilizers could be recommended as a control Sirry et El. (1969) found that application of fertilizmeasure for the disease in Holland. Zers reduced White rot disease and increased the Vield of onion. This beneficial effect was significant when the amount of fertilizers were increased up to 400 kg. N; 400 kg. P, and 100 kg. K per faddan. Effect of fertilizers on the growth and Vield of onion : Davis et al. (1951) indicated that fertilizers for onions are best placed in a band 2 in. below seed level either 1 in. to the side or directly under the seed, that rate of application does not exceed 1.000 1b. Iwata and Taniuchi (1953) found that high nitrate gave excellent growth of onion plant (in sand culture treated with 7 mutrient solutions). On the other hand, high ammonium caused stunting. The latter save higher per scre. total nitrogen and phosphomus in the leaf in other croff Kalitia (1954) reported that TK application before seedling and N when the first leaf appeared save but not with onion.

-5-

Campbell (1955) showed that applications of K decreased the yield of onions, but increased K and decrthe highest yield of onion.

Lorenz et al. (1955) studied the effect of liquid, essed No percentages in the plant.

dry and gageous fertilizers on onions in sandy loam soil. In the nitrogen tests, best yields resulted from ammonium

sulphate placed under the plant row, whereas that applied in the irrigation water gave much lower yields. Liquid

phosphoric acid and treble superphosphate produced equal

yields.

Cavazza (1956) found that increase in both yield

and average weight of onion buibs was obtained by applica ations of each ammonium nitrate, ammonium sulphate and

ammonium chloride at the rates of 650 to 800 kg./hectare. Das and Dhyani (1956) tested four levels of nit-

rogen as sulphate of ammonia and 4 spacings in a field trial With Fants Pag onions, They obtained the results:

80 lb. W/scre with 9 to 10 th. opining was optimum size

ુરે ૯

fresh and dry weight of tops, reight of Floot and of bulb; 60 No. N was best for fresh and dry weight bulb with 12 in. opening; bighest yield in weight

obtained with 60 lh. N and 4 in. spacing.

N.P.K trials where amounts of fertilizers applied per hectare were 600 kg. of ammonium sulphate, 720 kg. of superphosphate and 260 kg. of potassium chloride. Results indicated that N + P gave the highest yield and K produced less than the unfertilized control. Keeping quality was highest in bulbs grown without fertilizer or with P only. Yields from N + P + K were not; far below those from N+P.

 $\label{eq:continuous} \gamma_{\rm cont} = -\sum_{\rm acc}^{\rm cont} \gamma_{\rm cont} = \gamma_{\rm cont}$

Hori et al. (1958) reported that a basic application of 400 - 500 lb. of P per sore was required for adequate onion yields following a cabbage crop, and liming was also necessary in strongly acid soils.

Itegict al. (1958) reported that growth and yield of onion bulbs were correlated with N applications. Phosphorus appeared to be more essential than N or K for good growth.

Downes (1969) total that nimegen was a limiting factor in onion growth. Wittergen application resulted in a significant increase in the growth of leaves and of bulbs. Phospherus at a high level significantly increased bulb growth and accelerated maturity and also decreased leaf growth in comparison with low P levels. Application

of P resulted in an increase in bulb concentrations of P but did not affect the P content of the leaves. Potassium increased both leaf growth and bulb yields and tended to counteract the detrimental effect of excessively high N.

Balan (1960) found that the application of 180 kg. of ammonium nitrate, 330 kg. of superphosphate and 175 kg. of potash per hectare to onions, during the growing period, increased the sugar, ascorbic acid, and dry weight contents of the bulbs and produced higher yields.

Iwata et al. (1960) found that onion bulb yields were not reduced by omitting the nitrogen supply for one month. Nitrogen and dry matter content in the onion tops increased from March to May. In bulbs, N and dry matter contents increased rapidly from middle or late April until harvest.

paterson et al. (1960) worked in 1957 and 1958 on 3 onion varieties. 3 x 3 x 3 N, P and S factorial experiments were carried out with N applied at 0, 50 and 100 lb./acre, P205 at 0, 50 and 100 lb. and S at 0, 25 and 50 lb. They found that S had no significant effect on yields. Phosphorus increased the yields of both marketable and cull onions in both years. Nitrogen increased the yield of marketable onions and decreased that of cull

onions in 1957 but evoked no clear-cut response in 1958 when growing conditions were relatively poor. In 1957, the application of N increased the N content of the bulbs and decreased their P content; P_2O_5 at 50 lb./sore produced a highly significant increase in the P content of the bulbs. The 100 lb. rates of both N and P_2O_5 significantly increased the K content of the bulbs.

Butt (1961) showed that the yield of Giza 6 variety significantly increased with increase in nitrogen and phosphorus supply to plants.

Kageyama et al. (1961) stated that absorption of N, P and K by onions was in the proportion of 3:1:4. Greatest increases in yield were obtained with early P applications at the time of rapid shoot growth. Later P applications promoted luxurious leaf growth.

Lingle and Wight (1961) found that rates of N fertilizer above 100 lb. per acre had an adverse effect on the growth of onions. The leaf contents of Mn.in these plants were much higher than in plants receiving less N. The effect of ammonium sulphate in this respect was greater than that of ammonium nitrate or calcium nitrate.

MacKay and Chipmen (1961) applied N, P and K to

organic soil. They found that yield of onion responded strikingly to N up to at least 240 pounds N per acre. The effect of P was scarcely significant. That of K was not significant.

Ruf (1961) found that onion given as 50 lb. N/acre at sowing in March and 100 lb. N/acre as a side - dressing in mid-June yielded 29.4 tons/acre. Yields were similar in plots where 100 lb. N was applied at sowing. Control plots produced 5.8 tons.

Abd El-Raheem (1963) stated that the yield of onion plant was not affected by variations in NPK fertilizer treatments.

Wayse (1968) studied the effect of NPK trials on Kharif and Rabi onion crops. He found that there was no response to P application and a significant response to K in the Kharif crop was shown to be uneconomic. Significant yield increases in both crops resulted from N applications; rates of 44 lb. N/acre for the Kharif crop and 55 lb./acre for the Rabi crop were estimated to be the optimum economic doses.

The growth of onion plant:

Taguchi (1948) following autumn planting of