recol r

EVALUATION OF THE DIFFERENT TYPES
OF QUALITY CONTROL MATERIALS
USED IIN CLINICAL CHEMISTRY

THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE M.D.DEGREE OF CLINICAL AND CHEMICAL PATHOLOGY

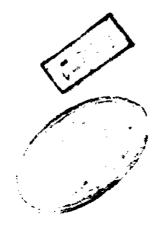
BY

OLA HAMDY DEMERDASH

SUPERVISORS

79626

PROF. SAMIR HANNA SADEK PROFESSOR OF CLINICAL PATHOLOGY


PROF.
SAWSAN HOSNY HAMZA
PROPESSOR OF CLINICAL
PATHOLOGY

PROF.
MAHMOUD SABRY SALLAM
PROFESSOR OF CLINICAL
PATHOLOGY

DR.GIHAN KAMAL HASSAN ALY LECTURER OF CLINICAL PATHOLOGY

> FACULTY OF MEDICINE AIN SHAMS UNIVERSITY

> > 1989

EVALUATION OF THE DIFFERENT TYPES OF QUALITY CONTROL MATERIALS USED IN CLINICAL CHEMISTRY

THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE M.D.DEGREE OF CLINICAL AND CHEMICAL PATHOLOGY

'TO MY DEAREST PARENTS' WITH ALL THE LOVE AND GRATITUDE ON EARTH

CONTENTS

CONTENTS

		page
*	INTRODUCTION AND AIM OF THE WORK	1
*	REVIEW OF LITERATURE	3
	- INTRODUCTION TO QUALITY CONTROL (Q.C.) In	
	CLINICAL CHEMISTRY	3
I	DEFINITION OF QUALTTY ASSURANCE	3
II	HISTORICAL PERSPECTIVE	3
	- QUALITY CONTROL MATERIALS	5
Ţ	DEFINITION OF A Q.C. MATERIAL	5
ΙΙ	DIFFERENCES BETWEEN Q.C. MATERIALS AND	
	CALIBRATION STANDARDS	5
	A. Function of Q.C. Materials and Calibration	
	Standards	5
	P. Composition of Q.C. Materials and Calibration	
	Standards	€
	C. Accuracy of The Assigned Values of 2.2.	
	Materials and Calibration Standards	£
	D. Method of Preparation of Q.C. Materials and	
	Calibration Standards	7
III	CLASSIFICATION OF Q.C. MATERIALS	٦
Α.	Classification of Q.C. Materials according to	
	their Physical State	8
	1- Lyophilized Q.C. Materials	8
	a) Preparation of lyophilized Q.C. materials	8

		Page
	b) Advantages of lyophilized Q.C. materials	10
	c) Disadvantages of lyophilized Q.C. materials	11
	(i) Reconstitution error	::
	(ii) Lack of vial-to-vial uniformity	11
	(iii) Polymerization of albumin	12
	(iv) Denaturation of some proteins	12
	d) Methods adopted to overcome some of the	
	disadvantages of lyophilized Q.C. materials	13
	2- Liquid Q.C. Materials	1 €
	a) Advantages of liquid Q.C. materials	17
	b) Disadvantages of liquid Q.C. materials	18
	3- Frozen Serum Pools	21
E .	Classification of Q.C. Materials according to The	
	Concentration of Analytes	23
€.	Classification of Q.C. Materials according to	
	their Intended Use	2.4
5	Classification of Q.C. Materials according to	
	their Grigin	2.5
	1- Origin of The Matrix	<u> </u>
	2- Origin of The Various Analytes	2€
ΙV	MATRIX EFFECTS OF Q.C. MATERIALS AND METHODS OF	
	THEIR EVALUATION.	3.0
A .	Factors which Influence The Similarity of The	
	Matrices of Control Materials and Patients' Sera	3.0

		Page
В.	Types of Matrix Effects	30
	1. Physical Matrix Effects	30
	2. Chemical Matrix Effects	31
С.	Methods of Evaluation of Matrix Effects	31
	1. Specificity Studies	31
	2. Commutability Studies	3.2
	3. High-Resolution Two-Dimensional Electrophoresis	ŝā
Ų	METHODS USED TO ASSIGN VALUES OF Q.C. POOLS	4 0
*	MATERIAL AND METHODS	43
I	MATERIAL :	43
Α.	Lyophilized Q.C. Serum	43
B.	Low-Temperature Liquid Q.C. Serum	44
ο.	Frozen Pooled Serum	4 <u>E</u>
ΙΙ	METHODS:	45
Α.	Method of Preparation of Pooled Serum	45
	1. Collection of Serum	4.5
	2. Adjustment of Analytes	4 =
	3. Addition of Preservatives	4 ~
	4. Dispensing	4 9
	5. Storage	4 8
В.	Studies Performed on The Different Control	
	Materials under Study	49
1.	Studies Performed on The Lyophilized O C Material	<i>o</i> <u>a</u>

		Page
a)	Study of vial-to-vial uniformity	49
b)	Study of the short-term stability after reconst-	
	o o o itution and storage at 2-8 C and -20 C	49
C 1	Study of the effect of repeated freezing and	
	thawing	50
₫`	Study of the long-term stability starting from the	
	production date up to the expiry date	\$ 0
e	Study of the long-term stability after explry.	ž.
2 -	Studies Ferformed on The Low-Temperature Liquid	
	Q.C. Material:	5.2
ā,	Study of the short-term stability of used buttles	
	stored at -20 C	5.2
Þ)	Study of the long-term stability after expiry	5 2
Ξ	Study of the antibacterial effect of ethylene	
	glycol	5, 3
3~	Studies Performed on The Pooled Serum:	53
a	Study of the effect of the added preservatives	5.3
Ė	Study of the long-term stability of the prepared	
	pocis	Ę 3
÷.	Methods Used to Evaluate Stability of Analytes:	<u>5</u> .4
	l- Statistical Methods:	5.2
	ar Student's "t" test	F 2
	Hi Timest tentession analusis	د ځ

		Page
	2- Predefined Limits of Analytical precision	55
Ď.	Methods Used to Compare The Lyophilized and Liquid	
	Control Materials under Study	56
E.	Analytical Methods Used	57
*	RESULTS	58
I	RESULTS OF LYOPHILIZED Q.C. MATERIAL "BIOTROL -33	
	Plus: LOT No 564'	5.8
ΙΙ	RESULTS OF LYOPHILIZED Q.C. MATERIAL 'BIOTROL -33	
	Plus : LOT No. 558'	63
III	RESULTS OF LOW-TEMPERATURE LIQUID Q.C. MATERIAL	
	DECISION-LEVEL II'	76
IV	RESULTS OF POOLED SERUM	85
*	DISCUSSION	106
*	SUMMARY AND CONCLUSIONS	142
*	REFERENCES	156
*	ARABIC SIMMARY	

ACKNOWLEDGEMENT

I would like to record my thanks to Professor Samir Hanna Sadek for suggesting the subject of this thesis. Being the 'Father' of statistics in this department, we owe him a lot of gratitude for the establishment of the very fine details of this tough subject into our minds in the most pleasant and easy way.

Many thanks are due to professor Sawsan Hosny Hamza for her overwhelming motherly attitude, her continuous encouragement and above all her close meticulius supervision which attended every stage of this work. Professor Hamza is a real conscientious and orderstating mother.

I am also grateful to Professor Mahmoud Sabry Sallam who had the favour of teaching us the basis of quality control and its application in our dear department at Air Shara University Specialized Hospital. His golden finger prints on the finish of this work are also unforgetable.

Many thanks are due to Dr. Gihan Kamal Hassan Aly, this bright figure in the Chemical Pathology Department. I was really honoured by her close supervision and brilliant remarks. Dr. Gihan had the favour of plotting the plan of this thesis and paving the way for every step

in it. Without her speculative eyes I could not have discovered many of the mistakes which were published in some of the papers related to our study (table 29).

I am extremely gratefl to my colleagues, bicohemists and teannialans at Air Snams University Hospital for their great understanding and help.

Al last but not least, I would like to record a dept of gratitude to my dear numbered for his continuous support and encouragement.

INTRODUCTION

AND

AIM OF THE WORK

INTRODUCTION

ANI

AIM OF THE WORK

The function of a routine blockemistry department is to provide the clinician with reliable analytic data. Quality control is one means of ensuring that results being issued from a nospital laboratory are dependable and sufficiently accurate to allow decisions to be taken with confidence. In this respect both internal quality control and external interlaboratory assessment programs are assential. Indeed, the latter have not can be sestablished in developing countries.

Federally, a proposally connexcially evaluable control products whether in the lyophilized or liquid state have been introduced by a lot of mandracturers. The reliability of these products greatly depends on their lively.

The air of the present study is to evaluate with the long-term stability as well as the short-term stability of two different types of commercially available control materials, namely; 'Biotrol-u2 Plus' and 'Beckman Decision Level II'. The former is a lyophilizel graduot

of Biotrol* laboratories, whereas the latter is an ethylene glycol-stabilized liquid control material, recently introduced by Beckman* Instruments Incorporation.

Furthermore, a serious trial is made aiming at the preparation of our own quality control material from pools of surplus patients' specimens in a trial to reduce the expenses. In this respect two-level pooled sera with different types of preservatives; namely thiomersal and sodium azide will be studied for their long-term stability at different storage conditions (2-8 C and 0-20 C respectively).

^{* &}lt;u>Biotrol Laboratories</u>, 75140, Paris, Cedex 03.

^{*} Beckman Instruments INC., Brea, California, U.S.A.