AIN SHAMS UNIVERSITY

FACULTY OF MEDICINE

DEPARTMENT OF COMMUNITY, ENVIRONMENTAL & OCCUPATIONAL MEDICINE

THE ROLE OF HEAT-STABLE ENTEROTOXIN PRODUCED BY ESCHERICHIA COLI IN DIARRHEA OF INFANTS IN EGYPT

618.923000 M.M.

A THESIS SUBMITTED AS A PARTIAL FULFILMENT FOR THE MASTER

DEGREE IN PUBLIC HEALTH

ΒY

MAHI MAHMOUD FAHIM

DEMONSTRATOR IN THE DEPARTMENT OF COMMUNITY, ENVIRONMENTAL AND OCCUPATIONAL MEDICINE, AIN SHAMS UNIVERSITY, FACULTY OF MEDICINE

M. S

13911

SUPERVISORS

PROF. DR. ALY MASSOUD, CHAIRMAN OF THE DEPARTMENT OF COMMUNITY AND ENVIRONMENTAL AND OCCUPATIONAL MEDICINE, AIN SHAMS UNIVERSITY DR. AZIZ EL KHOLY, DIRECTOR BIOMEDICAL RESEARCH CENTER FOR INFECTIOUS DISEASES, CAIRO

1981

ACKNOWLEDGMENT

I wish to express my highest appreciation and deepest gratitude to Prof. Dr. Aly Massoud, Head of department of community, Environmental and occupational medicine, Ain Shams Univ., for his skilful guidance, supervision, expert assistance and fruitful critisism to proceed with this work.

I would also like to express my sincere gratitude and thanks to Dr. Aziz El Koly, Director of Biomedical Research Center For Infectious Diseases, Cairo, for his experienced advice he kindly offered me throughout the preparation of this thesis.

I am also much obliged and greatly indebted to Dr. Rifki Faris, Assistant Prof., Department of community, Environmental and occupational medicine, Ain Shams Univ., for his valuable assistance and useful advices throughout this work.

I also wish to express my deepest gratitude to Dr. Ahmed H. Abdel Karim, Assistant Prof. of industrial, Med. National Research Center, for his continuous encouragment and advice.

I would also like to thank Dr. Ahmed Sherif Hafez, Lecturer, Department of community, Environmental and occupational medicine, Ain Shams Univ., for his endless help and advice.

I wish also to thank with my gratitude Dr. Nabil Guirguis, Ph.D., Head of Microbiology Unit, The Biomedical Research Center for Infectious Diseases, Cairo, for his useful advice, generous help and revision of this work.

I wish also to thank all the staff of Biomedical Research Center for Infectious Diseases, for their kind co-operation.

Finaly I extend my gratitude to every one who gave me help and advice.

CONTENTS

	<u>Page</u>
CHAPTER I	
INTRODUCTION	1
REVIEW OF LITERATURE	4
Z - Epidemiology of diarrheal disease	6
- Etiology of diarrheal disease	8
- <u>Escherichia</u> <u>coli</u>	14
- Antigenic structure of E. coli	16
- Enterotoxins produced by \underline{E} , \underline{coli}	19
- Heat-labile enterotoxin (LT)	19
- Mechanism of action of LT	20
- Heat-stable toxin (ST)	21
- Mechanism of action of ST	23
- <u>E</u> . <u>coli</u> as pathogenic organism	25
- Other factors that may be related to diarrhea	
caused by <u>E. coli</u>	3 C
- Vascular permeability factor	30
- Piliation of \underline{E} . \underline{coli} and both colonization and	
susceptibility to phagocytosis	3 l
- Objectives of the study	34
- a -	

	<u>Page</u>
CHAPTER II	
MATERIALS AND METHODS	35
- Population	35
- <u>E</u> . <u>coli</u> strains	37
- Culture media	37
- Other requisities	41
/ - Experimental animals and tissue cultures	42
- Studies on fecal specimens	42
- Collection and transportation of specimens	42
- Isolation of causative organisms	44
- Reading of Enterotube (Identification of Ente-	
robacteriaceae)	47
- Heat-stable enterotoxin preparation	48
/ - Test for detection of heat-stable enterotoxin.	49
- Reproducibility of suckling mouse assay	53
- Heat labile enterotoxin preparation	53
— Test for detection of heat labile toxin	54
<u>CHAPTER III</u>	
RESULTS	58

	Page
CHAPTER IV	
DISCUSSION	83
SUMMARY, CONCLUSIONS AND RECOMMENDATIONS	96
REFERENCES	103
ADARTO SIMMADV	

LIST OF TABLES

Table <u>No.</u>		Page
I	Distribution of cases and controls accord-	
	ding to age and sex	59
ΙΙ	Distribution of cases and controls accord-	
	ing to leucocytic count per high power	
	field in fresh stool specimens	60
III	Distribution of isolated \underline{E} . \underline{coli} from st-	
	ool specimens of cases and controls acco-	
	rding to lactose fermentation	62
ΙV	Enterobacteriaceae other than E. coli	
	isolated from stool of cases and controls	64
٧	Number and percent of individuals with \underline{E} .	
	coli producing heat stable toxin in their	
	stool specimens	66
VI	Number and percentage of individuals with	
	E. coli producing heat labile toxin in	
	their stool specimens	67
AII	Distribution of Enterotoxigenic <u>E</u> . <u>coli</u>	
	isolated from stool specimens of cases and	
	controls according to ST and IT production	68

Table No.	•	<u>Page</u>
IIIV	Distribution of \underline{E} . \underline{coli} isolated from fecal	
	specimens of cases and controls according	
	to toxigenicity and lactose fermentation	71
ΙX	Distribution of isolated \underline{E} . \underline{coli} according	
	to different biochemical reactions (ID val-	
	ue) by Enterotube	73
Х	Reproducibility of suckling mouse-assay	74
ΧI	Distributions of signs and symptoms among	
	diarrheal cases with ST or LT producing \underline{E} .	
	<u>coli</u>	77

LIST OF FIGURES

Fig.No.		Page
1	Enterotube showing negative and positive	
	reactions of the eight included media	38
2	Represents the documentation of biochem-	
	ical reactions, name of patient, date of	
	test and organism identified	38
3	Disposable container for collection of	
	fecal specimens	43
4	Rotating shaker	50
5	Suckling mouse assay	52
6	Chinese hamster ovary cells treated with	
	LT -ve <u>E</u> . <u>coli</u> strain showing no elonga-	
	tion of the cells	57
7	Chinese hamster ovary cells treated with	
	LT +ve <u>E</u> . <u>coli</u> strain showing elongated	
	spindle-shaped cells	57
8	Distribution of cases and controls accor-	
	ding to the presence or absence of toxige-	
	nic and non toxidenic F. coli	69

Fig.No.		Page
9	Distribution of controls group according	
	to age and weight	80
10	Distribution of cases with nontoxigenic	
	E. coli according to age and weight pre	
	the onset of diarrhea	81
11	Distribution of cases with toxigenic \underline{E} .	
	<u>coli</u> according to age and weight pre the	
	onset of diarrhea	82

INTRODUCTION

INTRODUCTION

In developing countries, diarrheal diseases, together with acute respiratory infection are the leading cause of infantile and childhood mortality. In Cairo at 1961, 60% of infant deaths were due to gastroentritis (Infant mortality rate was 151.2 per 1000 live births, while specific infant mortality rate from gastroentritis was 92.6 per 1000 live births), (Shawki, 1965).

Every year, up to 1000 million diarrheal episodes cause four to five million deaths. In careful community study, children have been found to spend about 2 months a year (i.e. 16% of the time) with diarrhea (Barua, 1980).

Diarrhea and vomiting are common symptoms in infants and young children, but these symptoms may occur as a feature of many infectious disease.

With regard to the aetiological diagnosis, the position is not so clear. In many cases no bacterial or viral agent is isolated from the feces, even in acute outbreaks of the disease (Gordon et al 1964, Gurwith and William 1977 and Evans et al 1977-a). This probably means that laboratory techniques are not sensitive enough to detect the infective agents, but it may also means that no infective agent is

involved. It may be that some organisms not usually regarded as pathogenic, but not present at birth, may when it first colonizes the infant gut cause a temporary upset of the flora or lead to the production of toxic metabolites which irritate the bowel wall (Christie 1974).

Although <u>Escherichia coli</u> strains (E. coli) predominants among aerobic commensal organisms present in the baby gut, yet it stands now among the common agents producing diarrhea (Cook 1974, Gurwith and William 1977).

The pathogenicity of certain strains of \underline{E} , coli attributed either to presence of certain surface antigen giving invasivness properties and causing dysentry like syndrom (Ogawa et al 1968) or to production of enterotoxins that cause fluid accumulation giving salmonella like enterites with no invasion or ulceration (Sakazaki et al 1967).

Enterotoxigenic strains of <u>E</u>. <u>coli</u> produce two known types of enterotoxin, one heat-labile toxin (LT), the other is heat-stable toxin (ST) (Smith and Halls 1967a-b, Gyles and Barnum 1969, Smith and Gyles 1970 a,b, and Gyles 1971). LT is partially identical to choleragenic toxin of <u>Vibrio cholera</u> and has the same mechanism of action. LT had given much attention and its role in diarrhea seems well established.

As regards the role of ST in diarrhea of infants the position was not so clear till recent studies showed that ST producing strains of \underline{E} , coli were responsible for some cases and some outbreaks of diarrhea (Serafim et al 1977, Luke et al 1978 and Bl'aha et al 1978), and this was supported by the study done by Levine et al (1977) on volunteers which proved that strains of \underline{E} . coli that produce ST are important in etiology of diarrheal disease.

The aim of this study is to determine the role of this heat stable enterotoxin produced by \underline{E} . \underline{coli} as a factor in infantile diarrhea in Egyptian rural area.