STUDY OF PLASMA ENDOTHELIN-1 LEVEL IN LIVER CIRRHOSIS AND HEPATORENAL SYNDROME

THESIS

SUBMITTED FOR PARTIAL FULFILMENT OF THE M.D. DEGREE IN

CUNICAL AND CHEMICAL PATHOLOGY

Ву

Azza Abdel-Karim El-Tagoury

M.B.B.Ch. & M.S. Clinical Pathology Faculty of Medicine - Ain Shams University 57073

SUPERVISORS

Prof. Dr. Mahmoud Sabry Sallam

Prof. of Clinical and Chemical Pathology
Ain Shams University

Dr. Nadia Aly Abdel-Sattar

Assistant Prof. of Clinical and Chemical Pathology
Ain Shams University

Dr. Ola Hamdy Demerdash

Assistant Prof. of Clinical and Chemical Pathology
Ain Shams University

Dr. Dalia Helmy Farag

Lecturer of Clinical and Chemical Pathology
Ain Shams University

Faculty of Medicin Ain Shams (Lines)

ACKNOWLEDGMENT

I WISH TO EXPRESS MY DEEPEST GRATITUDE AND APPRECIATION TO PROFESSOR DR. MAHMOUD SABRY SALLAM, PROFESSOR OF CLINICAL PATHOLOGY, AIN SHAMS UNIVERSITY FOR HIS CONSISTENT SUPERVISION AND VALUABLE SUGGESTION. HE OFFERED AS FAR AS CHANCES PERMITTED AND ABOVE ALL FOR HIS MORAL SUPPORT. WITHOUT HIS HELP, THE WHOLE WORK WOULD NOT HAVE BEEN POSSIBLE.

I'M ALSO SO GRATEFUL TO DR. NADIA ALY ABDEL-SATTAR, ASSISTANT PROFESSOR OF CLINICAL PATHOLOGY, AIN SHAMS UNIVERSITY FOR HER TRUSTFUL HELP, KINDNESS AND UNFAILING ADVICE.

I WOULD LIKE TO OFFER A SPECIAL GRATITUDE TO DR. OLA HAMDY DEMERDASH, ASSISTANT PROFESSOR OF CLINICAL PATHOLOGY, AIN SHAMS UNIVERSITY FOR HER KEEN INTEREST AND SUPERVISION. I'M SO GRATEFUL TO SINCERITY IN EFFORT AND TIME OFFERED BY HER.

I WISH TO EXPRESS MY DEEP APPRECIATION TO DR. DALIA HELMY FARAG, LECTURER OF CLINICAL PATHOLOGY, AIN SHAMS UNIVERSITY FOR HER KIND HELP AND SINCERE ADVICE.

SINCERE THANKS ARE ALSO DUE TO DR. MAHMOUD ZAKI, LECTURER OF MEDICINE, AIN SHAMS UNIVERSITY FOR HIS HELP AND SUPPORT.

TO ALL THE STAFF OF CLINICAL CHEMISTRY DEPARTMENT, I WISH TO GIVE MY GRATITUDE PERSONALLY FOR EACH, ESPECIALLY FOR BIOCHEMIST AHMED KAMAL FOR HIS GREAT HELP.

LIST OF FIGURES

Figure	Page No.
1. Vasoactive substances released from the vascular endothelium	5
2. Amino acid sequence of ET-1, ET-2 and ET-3	15
3. Synthetic pathway for production of the endothelins (ET)	19
4. Generation and actions of ET-1 in the blood vessel wall	38
5. Regression analysis showing correlation between age and ET-1	
among group-1 patients	143
6. Regression analysis showing correlation between creatinine	
clearance and ET-1 among group-1 patients	144
7. Regression analysis showing correlation between ALP and ET-1	
among group-2 patients	145
8. Regression analysis showing correlation between GGT and ET-1	
among group-2 patients	146
9. Comparative study between different studied groups regarding	
creatinine clearance	147
10. Comparative study between different studied groups regarding	
BUN	148
11. Comparative study between different studied groups regarding	
endothelin-1 levels	149
12. Comparative study between different studied groups regarding	
serum creatinine	150
13. Comparative study between different studied groups regarding	
serum total proteins	151
14. Comparative study between different studied groups regarding	
serum albumin	152

LIST OF TABLES

Table	Page No.
1. ET receptor mapping in vivo	27
2. Plasma ET-1 levels in different age groups	35
3. Biological actions of endothelin peptides	61
4. Possible causes of renal vasoconstriction in hepatorenal syndrome	96
5. List of standard concentrations	122
6. Descriptive statistics for control group	133
7. Descriptive statistics for group-I patients (cirrhosis)	133
8. Descriptive statistics for group-II patients (acute renal failure)	134
9. Descriptive statistics for group-III patients (hepatorenal failure)	134
10. Comparative statistical study between control and group I patients	
(cirrhosis group)	135
11. Comparative statistical study between control and group II patients	
(acute renal failure group)	135
12. Comparative statistical study between control and group III	
patients (hepatorenal failure group)	136
13. Comparative statistical study between cirrhosis and acute renal	
failure groups	136
14. Comparative statistical study between cirrhosis and hepatorenal	
failure groups	137
15. Comparative statistical study between acute renal failure and	
hepatorenal failure group	137
16. Statistical comparison between different studied groups regarding	
plasma ET-1 using logistic "t" test	138
17. Correlation study between ET-1 and all studied parameters for	
group-I (cirrhosis) using ranked Sperman correlation test	139
18. Correlation study between ET-1 and all studied parameters for	
group-II (acute renal failure) using ranked Sperman correlation test	139
19. Correlation study between ET-1 and all studied parameters for	
group-III (hepatorenal failure) using ranked Sperman correlation	
test	140
20. Analysis of variance for all patient groups (parameters were sorted	
in descending order according to their F-ratio)	141
21. Raw data for control group	i
22. Raw data for liver cirrhosis with ascites	iii
23. Raw data for liver cirrhosis without ascites	\ v
24. Raw data for acute renal failure	vii
25. Raw data for hepatorenal failure	ix

ABBREVIATIONS

ET Endothelin Prostacyclin

ATP Adenyl triphosphate ADP Adenyl diphosphate

NO Nitric oxide

EDRF Endothelium derived relaxing factor Cyclic guanosine monophosphate Cyclic adenosine monophosphate

A-II Angiotensin-II

t-PA Tissue plasminogen activator

EDHF Endothelium-derived hyperpolarizing factor

ACE Angiotensin converting enzyme

PAF Platelet activating factor [Ca²⁺]i Intracellular calcium lonized calcium

GFR Glomerular filtration rate

RBF Renal blood flow TXA, Thromboxane A2

VIC Vasoactive intestinal contractor

S6b Sarafotoxin 6 b

APR Acute phase reactant

TGF-B Transforming growth factor B

AU Adenosine uracil

Lys lysine
Arg Arginine
Cys Cysteine
Met Methionine
Tryp Tryptophan
Ile Isoleucine

ECE Endothelin converting enzyme
ET-1-LI Endothelin-1 like immunoreactivity

PMN Polymorphonuclear
ANP Atrial natriuretic peptide
TNF Tumor necrosis factor

IL-1 Interleukin-1

PLC Phospholipase C
Pl Phosphatidyl inositide
IP Inositol phosphate
PKC Protein kinase C

EC Extracellular IC Intracellular

EGTA Ethyl glycol tetra-acetic acid ROC Receptor operated channel VOC Voltage operated channel

PLA2Phospholipase A2NEPNeutral endopeptidase

SNFR Single nephron filtration rate Renin angiotensin system

ADH Antidiuretic hormone

EDCF Endothelium derived contracting factor

ARF Acute renal failure
RIA Radioimmunoassay
EIA Enzyme immunoassay

CLIA Chemiluminescence immunoassay

POD Peroxidase

TFA Trifloro acetic acid

HPLC High performance liquid chromatography

ATN Acute tubular necrosis

AST Aspartate amino transferase
ALT Alanine amino transferase

ALP Alkaline phosphatase

GGT Gammaglutamyl transferase

HRS Hepatorenal syndrome

FeNa Fractional excretion of sodium

COP Cardiac output

GIT Gastrointestinal tract MAO Monoamine oxidase

AV Arteriovenous

EDTA Ethylene diamine tetra acetic acid

KIU Kallikrein inhibitory unit

CONTENTS

INTRODUCTION AND AIM OF THE WORK	1
REVIEW OF LITERATURE	
 I. Vasoactive factors A. Endothelium derived vasodilators 1. Prostacyclin 2. Nitric oxide 3. Endothelium-derived hyperpolarizing factor B. Endothelium derived vasoconstrictors 1. Platelet activating factor 2. Thromboxane A₂ 3. Endothelin "ET" 	4 6 9 11 12 12
II. Endothelin: A. ET family and structure B. Molecular genetics C. Biosynthesis D. Regulation of production E. Sites of production F. Release G. Binding sites and receptors H. Plasma concentration I. Physiological variation J. Mechanisms of action K. Clearance and metabolism L. Effects M. Role of ET in the pathogenesis of some clinical disorders N. Therapeutic role of anti-endothelins	14 17 20 22 24 26 27 32 34 37 47 49
III. Methods of assays	
A. Bioassay 1. In vivo bioassay 2. In vitro bioassay 3. Immunohistochemistry	73 74 76

B. Immunoassay 1. RIA 2. EIA 3. CLEIA C. Methods of extraction	76 78 79
IV. Liver cirrhosis and hepatorenal syndrome	
A. Liver cirrhosis 1. Definition 2. Classification 3. Clinical cirrhosis and its types 4. Clinical picture and sequelae of cirrhosis	83 84 84 86
B. HRS 1. Definition 2. Clinical features 3. Lab findings 4. Diagnosis and differential diagnosis 5. Pathogenesis 6. Treatment	90 92 92 93 94 104
SUBJECTS AND METHODS	105
RESULTS	130
DISCUSSION	153
SUMMARY AND CONCLUSION	164
REFERENCES	168
ARABIC SUMMARY	

INTRODUCTION AND AIM OF THE WORK

Introduction:

Endothelin (ET) is a recently discovered circulating polypeptide consisting of 21 amino acids. Three isoforms have been identified; ET (1,2,3) (*Inoue et al.*, 1989)a.

Endothelial cells produce exclusively ET-1 (Saito et al., 1989). ET-1 produces a profound and sustained contractile response (Yanagisawa et al., 1988). This effect occurs through rising of the intracellular free Ca⁺⁺ and increasing the inositol phosphate turnover (Marsden et al., 1989).

Elevated plasma concentrations of endothelin have been reported in patients with acute renal failure (*Firth et al., 1988*), subarachnoid hemorrhage (*Masaoka et al., 1989*), myocardial infarction (*Miyauchi et al., 1989*), chronic renal failure, hypertension (*Shichiri et al., 1990*) and sepsis (*Pittet et al., 1991*).

Endothelial cells of various origin synthesize endothelin. It is therefore likely that the hepatic endothelial and Kupffer cells, which are the predominant cell types constituting liver sinusoids also synthesize this peptide (*Yanagisawa et al., 1988*).

Under conditions of hypoxia and vascular tissue damage, endothelial cells are stimulated to synthesize and secrete endothelin (*Firth et al., 1988*). Accordingly, in cases of liver injury leading to hepatic hypoxia, the hepatic endothelial cells also generate this peptide. Since this peptide produces a powerful renal and systemic vasoconstriction, such effects may mediate the development of renal failure in patients with severe liver disease (*King et al., 1989*).

Aim of the work:

The aim of the present work is to study plasma endothelin levels in patients with liver cirrhosis with and without ascites, acute renal failure and hepatorenal syndrome in a trial to find out the clinical significance of endothelin in the various studied diseased groups as well as its possible role in the pathogenesis of the hepatorenal syndrome.