Ain Shams University Faculty of Girls for Arts, Science and Education Physics Department

Investigation of Some Physical Properties of SnS Thin Films Using Electrical and Optical Measurements

THESIS

Submitted for the Degree of Ph. D. in Physics

52221

By

AMAL FAWZY SHAFIK EL-DEEB

M.Sc. (1984)

Supervised By

Prof. Dr. MANSOUR MOHAMED HASSAB EL-NABI

Prof. Dr. HILMY TAHA EL-SHAIR

Ass. Prof. Dr. HODA SHEHATA SOLIMAN

September 1995

Ain Shams University
Facutly of Girls for Arts,
Science and Education
Physics Department

Name of Student: AMAL FAWZY SHAFIK EL-DEEB

Title of Thesis:

Investigation of Some Physical Properties of SnS Thin Films Using Electrical and Optical Measurements

Supervised By

Prof. Dr. MANSOUR MOHAMED HASSAB EL-NABI

Prof. Dr. HILMY TAHA EL-SHAIR

Ass. Prof.Dr. HODA SHEHATA SOLIMAN

Approved

Hanson H. El No

HodaShehata

قالوا سبحانك لا علم لنا إلا ما علمتنا إنك أنت العليم الحكيم.

صرق لافة العظيم

(سورة البقرة- آية - ٣٢)

إهــــداءِ

أهرى هزا العمل المتواضع إلى كل أهلي وعشيرتي الزين تمنوا ووعوا لي بالكثير وتحملوا وعانوا معى الكثير

Acknowledgement

It gives me a great pleasure to express my sincere thanks and appreciations to Prof. M.M.H. El-Nabi, Prof. of Phys., Fac. of Girls, Ain Shams U., for his guidance, valuable continuous supervision and fruitful comments.

My gratitude and thanks to Prof. H.T.El-Shair, Prof. of Phys., Fac. of Educ., Ain Shams U., for his fruitful supervision and also for his advice and assistance.

Deep thanks to Dr. H.S. Soliman, Ass. Prof. of Phys., Fac. of Educ., Ain Shams U., for her encouragement and assistance.

Sincere thanks and appreciations are offered to prof. A.B. El-Bialy, Head of phys. Dep., Fac. of Girls, and are also offered to prof. M.Abd El-Hady, Head of phys. Dep., Fac. of Educ., Ain Shams U., for providing the necessary facilitate needed to carry out this work.

Deep thanks to Prof. B.A.Khalifa, Prof. of Phys., fac. of Science, Ain Shams U., for her sincere help, valuable suggestions and discussions.

Sincere thanks to Prof. M.M.El-Nahass, Prof. of Phys., Fac. of Edu., and Dr. D. Abd el-Hady, Ass. Prof. of phys., Fac. of eng., Ain Shams U., for their help and support during the experimental work.

Finally, I would like to thank all the staff members of the research groups in the phys. Dep. in the Fac. of Educ., Ain Shams U., for their friendship, encouragement and for their kind Co-operation in various ways.

Contents

			Page
List	of Plates	and figures	i
List	of Tables		ii

		•••••	
		ION	
		LITERATURE REVIEW AND	
		THEORITICAL BACKGROUND	2
I. 1	Structura	al properties of Tin Sulphide Material	
I.2	The Elec	tronic Band Structure of SnS	11
1.3		t Properties of SnS	
1.4		Properties of SnS	
			
	APTER II	EXPERIMENTAL TECHNIQUES	43
11.1		Under Investigation	
11.2		ion of SnS Thin Films	
	II.2.a)	Cleaning of the Glass and Quartz Substra	
	II.2.b)	Evaporation Technique	44
11.3	Methods	for Film Thickness Measurements	46
	II.3.a)		
	II.3.b)	Interferometric Technique	
11.4	Structura	l Identification of the Investigated Sample	
	II.4.a)	X-ray Diffraction	
	II.4.a.1)		
		Intensities	
		i) Correction	
		ii) Normalization of the x-ray Intensities	
		to Absolute Units	
	II.4.a.2)		
	,	Background Scattering and the Resolutio	
		of the overlanned neaks	

	II.4.a.3)	Crystallite Sizes and Lattice Distortion	56
	II.4.a.4)	Determination of the Ideal crystallite Size	s57
	II.4.b)	Transmission Electron Microscopy	58
	II.4.b.1)	Electron Diffraction	58
	II.4.b.2)	Preparation of SnS Thin Films for Microsof	copic
		observation	
II.5)	Transport	Properties Measurements	64
	II.5.a)	Electrical Resistivity Measurements	64
	II.5.b)	Thermoelectric Power Measurements	65
	II.5.c)	Current-Voltage Characteristics	
		Measurements	71
II.6)	Determin	ation of the Optical constants of SnS	
	Thin Film	ns	71
	II.6.a)	The Transmittance $T(\lambda)$ at Normal	
		Light Incidence	73
	II.6.b)	The Reflectance $R(\lambda)$ at Normal incidence	e76
	II.6.c)	A computational Technique for Determin	ing
		the Optical Constant $n(\lambda)$ and $k(\lambda)$ of	
		thin Films	77
СНА	APTER III:	STRUCTURAL PROPERTIES OF SnS	
		MATERIAL	84
III.1	X-ray Di	ffraction Analysis of SnS in Powder Form	
Ш.2	The Strue	ctural Dependence on Film Thicknesses	
	of SnS T	hin Films	84
III.3	Structura	ll Dependence on the Annealing Temperati	ıre
	for the S	nS thin films	89
III.4	Crystalli	te Sizes and Lattice Straines of	
	SnS Thir	ı Films	89
III.5		Diffraction Studies of SnS Thin Films	
CHA	APTER IV	OPTICAL PROPERTIES OF SnS THIN	
		EH MC	105

IV.1		tral Distribution of the TransmissionT (λ)	
	and Refle	ction R (λ) of SnS Thin Films10	16
IV.2	The Spec	tral Distribution of both the Refractive	
	Index n (2	λ) and the Absorption Index $k(\lambda)$ of	
	SnS Thin	Films	16
IV.3	The Lattic	ce Dielectric Constant ϵ_L of SnS Thin Films 10	19
IV.4	The Spec	tral Distribution of the Absorption	
	Coefficien	nt (α) of SnS Thin Films11	3
IV.5	The Allov	wed Optical Transitions in SnS Thin Films11	3
CHA	PTER V:	ELECTRICAL TRANSPORT PROPERTIES	
		OF SnS THIN FILMS	2
V.1	Dark Elec	etrical Resistivity of SnS Thin Film	3
	V.1.a)	Dark Electrical Resistivity Dependence	
		of the SnS Film Thickness	3
	V.1.b)	Dark Electrical Resistivity Dependence of	
		the SnS Film Temperature	:7
	V.1.c)	Dark Electrical Resistvity Dependence of	
		the Annealing Temperature13	5
V.2.	Thermoel	ectric Power (Seebeck Coefficient S)	
	of SnS Th	nin Films 13	5
	V.2.a)	Seebeck Coefficient Dependence of the SnS	
		Film Thickness	5
	V.2.b)	Seebeck Coefficient Dependence of the	
		Annealing Temperature 14	2
V.3.	The Curre	ent-Voltage Characteristics of p-SnS/n-Si	
	Heterojur	nction15	2
	V.3.a)	Static I-V charateristics of a p-SnS/n-Si	
		Heterojunction	2
	V.3.a.i)	Determination of the Base Resistance R _b 15	5
	V.3.a.ii)	Forward Current Activation Energy	7
	V.3.a.iii)	Reverse Current Activation Energy15	9
		Pactification Patio	

V.3.a.v)	The Conduction Mechanism	162
V.3.b)	Capacitance-Voltage (C-V) Chara	acteristics
	of p-SnS/n-Si Heterojunction	170
CONCLUSIO	NS	171
REFERENCES	S	175
ARABIC SUM	(MARY	

List of Plates and Figures

		Page
Plate (1):	A photograph of the coating unit	
	(type E 306 A Edwards, England)	45
Plate (2)	A photograph of the Thickness Monitor	
	(Model FTM4, Edwards, England)	48
Plate (3):	The x-ray Diffractometer (type PW 1373, Philips).	54
Plate (4):	Electron Diffraction pattern of thin	
	polycrystalline vacuum deposited gold film	
	At 60 kV	62
Plate (5):	A photograph of the Double Beam	
	Spectrophotometer (CARY 2390, Varian Co.).	74
Plate (6):	The electron diffraction pattern of SnS thin film	
	(30 nm thick) deposited onto glass substrate	102
Plate (7):	The electron diffraction pattern of SnS thin	
	film (60nm thick) deposited onto glass substrate.	102
Fig.(1):	Crystal structure of SnS according to Hofmann	3
Fig.(2):	Transformation of SnS from orthorhombic	
	crystal to cubic	5
Fig. (3):	The Brillouin Zone appropriate to SnS	. 12
Fig. (4):	A plane monochromatic light at normal incident	
	on an absorbing film between the two dielectric	
	media air and quartz	41
Fig. (5):	Schematic diagram of the interferometer	
	used for thickness measurement	50
Fig. (6):	The optical set-up for producing multiple	
	beam Fizeau fringes at reflection	50
Fig. (7):	The Multiple-beam Fizeau fringes with step	51
Fig. (8):	Relation between the ring radii and $(h^2+k^2+\ell^2)^{1/2}$	
	of allowed reflecting planes of f.c.c.gold	63
Fig. (9):	A Schematic diagram of the film electrode system.	66

Fig. (10):	Cryostat used for resistivity measurements.	67
Fig. (11):	Holder used for thermoelectric power measuremer	ts.70
Fig. (12):	Electric circuit for current-voltage characteristics	
	of p-n heterojunction	72
Fig. (13):	Simplified optical, schematic (A) in the V case	
	and (B) in the W case	75
Fig. (14):	Flow chart diagram of program used for n	
	and k calculation	79
Fig. (15):	Plot of n versus variance for different values	
	of k, $t/\lambda = 0.1$, $T_{exp} = 0.484$ and $R_{exp} = 0.327$	8 0
Fig. (16):	Flow chart diagram of step-length optimisation	
	technique	82
Fig. (17):	, , , , , , , , , , , , , , , , , , ,	85
Fig. (18):	• • • • • • • • • • • • • • • • • • •	
	with different thickness.	88
Fig. (19):	X-ray diffraction patterns of SnS thin films	
	(400 nm thick) deposited at room temperature	
	then annealed at the temperatures marked	
	on the curves	90
Fig. (20):	The profiles of SnS powder annealed at 300°C	
	for five hours.	93
Fig. (21):	The profiles of the resolved (111,130) reflection	
	planes of SnS thin film (400 nm thick) as deposite	d.94
Fig. (22):	The profiles of the resolved (111,130) reflection	
	planes of SnS thin film (400 nm thick) annealed	
	at 60°C	. 95
Fig. (23):	The profiles of the resolved (111,130) reflection	
	planes of SnS thin film (400nm thick) annealed	
	at 100°C	96
Fig. (24):	The profiles of the resolved (111,130) reflection	
	planes of SnS thin film (400nm thick) annealed	
	at 150°C	97

Fig. (25):	The profiles of the resolved (111,130) reflection	
	planes of SnS thin film (400 nm thick) annealed	
	ut 200 Cimiling	98
Fig. (26):	The spectral distribution of the transmission $T(\lambda)$	
	for SnS thin films with different thicknesses	107
Fig. (27):	The spectral distribution of reflection $R(\lambda)$ for	
	SnS thin films with different thicknesses	108
Fig. (28):	Dispersion curves of both n and k for the	
	as-deposited SnS thin films	110
Fig. (29):	The real dielectric constant ε_r as a function of λ^2 for	Γ
	SnS thin films	112
Fig. (30):	The absorption coefficient (α) of SnS thin films	
	as a function of the photon energy (hv)	115
Fig. (31):	Dependence of $(\alpha h v)^{\frac{1}{2}}$ on the photon energy (hv)	
•	for SnS thin films	119
Fig. (32):	Dependence of $(\alpha h \nu)^2$ on the photon energy $((h \nu)$	
	for SnS thin films	120
Fig. (33):	The relation between log ($(\alpha h v)$ and log ($\frac{1}{\lambda}$) for	
	SnS thin films	121
Fig. (34):	I-V relation for SnS thin film with Al electrodes.	124
Fig. (35):	I-V relation for SnS thin film with Ag electrodes.	125
Fig. (36):	The dark electrical resistivity (P) of SnS films	
-	versus the film thickness (t)	126
Fig. (37):	Temperature dependence of the electrical	
-	resistivity of SnS thin film of thickness (60nm).	128
Fig. (38):	Temperature dependence of the electrical	
	resistivity of SnS thin film of thickness (100nm).	129
Fig. (39):	Temperature dependence of the electrical resistivi	ty
- · ·	of SnS thin film of thickness (130nm)	130
Fig. (40):	Temperature depndence of the electrical resistivity	У
• •	CO. C. shim Elm of shiplen and (140mm)	131

Fig. (41):	Temperature dependence of the electrical resistivit	У
5 ()	of SnS thin films of thickness (180nm)	132
Fig. (42):	Temperature dependence of the electrical resistivit	У
	of SnS thin film of thickness (230nm)	133
Fig. (43):	Temperature dependence of the electircal resistivit	y
	of SnS thin film (120nm thick) as deposited	136
Fig. (44):	Temperature dependence of the electrical resistivit	У
	of SnS thin film (120nm thick) annealed at 100°C	
	for two hours	137
Fig. (45):	Temperature dependence of the electrical resistivit	У
	of SnS thin film (120nm thick) annealed at 125°C	
	for two hours1	38
Fig. (46):	Temperature dependence of the electrical resistivity	ty
	of SnS thin film (120nm thick) annealed at 150°C	
	for two hours	139
Fig. (47):	Temperature dependence of the electrical resistivity	ty
	of SnS thin film (120nm thick) annealed at 175°C	
	for two hours	140
Fig. (48):	Seebeck coefficient (S) versus temperature (T)	
	for SnS thin film (160nm thick) as deposited	143
Fig. (49):	Seebeck coefficient (S) versus temperature (T)	
	for SnS thin film (300nm thick) as deposited	144
Fig. (50):	Seebeck coefficient (S) versus temperature (T)	
	for SnS thin film (330nm thick) as deposited	145
Fig. (51):	Seebeck coefficient (S) versus temperature (T)	
	for SnS thin film (417.6nm thick) as deposited	146
Fig. (52):	Seebeck coefficient (S) versus temperature (T)	
	for SnS thin film (160nm thick) annealed at 100°C	
	for two hours	147
Fig. (53):		
	for SnS thin film (417.6nm thick) annealed at	
	100°C for two hours	148

Fig. ((54):	Seebeck coefficient (S) versus temperature (T)	
		for SnS thin film (160nm thick) annealed at 170°C	
		for two hours	149
Fig. ((55):	Seebeck coefficient (S) versus temperature (T)	
		for SnS thin film (417.6nm thick) annealed at	
		170°C for two hours	150
Fig. ((56):	I-V characteristics for pre-annealed P-SnS/n-Si	
		heterojunction at different ambient temperatures	154
Fig. ((57):	Ln (Base resistance R_b) versus $\frac{1000}{T}K^{-1}$	156
Fig. ((58):	Ln (forward current I_f) versus $\frac{1000}{T}K^{-1}$	158
Fig. ((59):	Forward current activation energy ΔE_f as a function	1
		of the applied forward voltage V _f	158
Fig. ((60):	Ln (reverse current I_r) versus $\frac{1000}{T}K^{-1}$	160
Fig. ((61):	Reverse current activation energy ΔE_r as a function	ı
		of the applied reverse voltage	
Fig. ((62):	The rectification ratio (RR) versus voltage	
Fig. ((63-67): LogI versus the applied voltage at a given	
		temperature 164	-168
Fig. ((68):	Log I _o versus T k	169