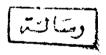


AIN SHAMS UNIVERSITY


FACULTY OF ENGINEERING

ELECTRICAL POWER AND MACHINES DEPARTMENT

A Microprocessor Based Reactive Power Compensator

A Thesis Submitted in Fulfillment of the Requirement of the Degree of Doctor of Philosiphy of Science

Electrical Engineering
To Ain Shams University, Faculty of Engineering,
Elect. Power & Machines Dept.

BY

ADEL ABDEL-MONEIM SAYED AHMED

B.Sc. Elect. Eng., Ain Shams University, 1982, M.Sc. Elect. Eng., Ain Shams University, 1988.

621,3916 A . A

Supervised by

Prof. Dr. A. A. EL SATTAR

Elect. Power and Machine Dept., Faculty of Engineering, Ain Shams University

Dr. P. MEHTA

Č.

Dr. M. K. DARWISH

Electrical Engineering & Electronics, Brunel University, U.K.

CAIRO 1993

EXAMINERS COMMITTEE

Name, Title & Affiliation

Signature

Prof. Dr. A.M. El Tobshy
 Professor, Dept. of Electrical Power and Machines, Faculty of Engineering, Cairo University

2. Prof. Dr. M. S. Morsy
Professor, Dept. of Electrical Power and
Machines, Faculty of Engineering, Ain Shams
University

M.S. Morsy

3. Prof. Dr. A. A.Sattar
Professor, Dept. of Electrical Power and Machines, Faculty of Engineering, Ain Shams University

20 sisalt

4. Dr. P. Mehta

Reader, Department of Electrical Engineering and Electronics, Brunel University, U.K.

STATEMENT

This dissertation is submitted to Ain Shams University

for the degree of Doctor of Philosiphy in Electrical

Engineering.

This work included in this thesis was carried out by the

author. No part of this thesis has been submitted for a degree

or a qualification at other university or institution.

Date:

Signature:

Name: Adel Abdel Moniem Sayed Ahmed

ACKNOWLEDGEMENT

The author gratefully acknowledges his indebtedness to *Prof. A. A. El-Sattar* for his invaluable guidance and encouragement throughout the course of this research work.

The auther wishes to express his deep and sincere gratitude to his supervisors, *Dr. P. Mehta* and *Dr. M. Darwish* for their enlightened supervision, kind assistance, encouragement and constructive suggestion throughout the course of this research work. Thanks is due to *Dr. Mostafa Darwish* for his valuable assistance discussions and many help.

The auther is grateful to the Head and all staff members of Electrical Power & Machines Departement in the Faculty of Engineering, Ain Shams University.

The auther wishes to thank professor G. Musgrave, Head of Department of Electrical Engineering and Electronics, Brunel University, for providing research facilities and his agreement for open the Channel Scheme between Ain Shams University and Brunel University.

He expresses his thanks due to the Arab Student Aid International (ASAI) for providing this opportunity and finacial support. Also, he would like to take this opportinuity to thank HRH prince *Turki Bin Abd UL Aziz*, the Chairman of ASAI.

He wishes to thank and acknowledges his wife for her continuous encouragement and help during this study and difficult times.

CONTENTS

		Page
LIST	OF FIGURES OF SYMBOLS TRACT	vi xix xxi
	TER I: INTRODUCTION	1
1.1	General	1
1.2	Converter power factor	2
1.3	Network power factor correction	3
1.4	Converter power factor improvement	9
1.4.1	Extinction angle control	10
1.4.2	Symmetrical angle control	13
1.4.3	Pulse-width-modulation control	14
1.4.4	Sinusoidal pulse-width modulation	15
1.5	Source of harmonics and their proplems	16
1.6	Harmonic elimination	18
1.6.1	Shunt filters	19
1.6.2	Series filters	19
1.6.3	Phase multiplication	- 21
1.6.4	Harmonic injection (active filters)	22
1.7	Control of harmonics	25
1.8	The proposed technique	28

		Page
СНАРТ	ER II : ANALYSIS OF SINGLE PHASE	
	CONVERTER AND REGULATOR CIRCUITS	30
2.1	Introduction	30
2.2	Single phase converter circuits and waveforms	31
2.3	Single phase full converters without free	
	wheeling diode (F.W.D.) loaded with R-L series	
	load	35
2.4	Single phase full converter with F.W.D.	38
2.4.1	Series R-L load	38
2.4.2	Series R-L load with a back e.m.f. load	51
2.4.2.1	Continuous current operation	52
2.5	Single phase uncontrolled full converter loaded	
	with parallel R-C load	57
2.6.	Single phase ac voltage regulator with resistive	
	load	61
CHAPT	ER III : SWITCHED CAPACITOR TECHNIQUE	66
3.1	Introduction	66
3.2	Semiconductor switch	67
3.2.1	Method of controlling the semiconductor switch	68
3.3	Expression for switching function, SF, in case of	
	a uniform pattern	69

		Page
3.4	Types of switched-capacitor circuits	71
3.4.1	General	71
3.4.2	Single - switch single - capacitor circuit	72
3.4.3	Double - switch single - capacitor circuit	73
3.4.4	Double - switch Double - capacitor circuit	74
3.4.5	Triple switched configuration	75
3.5	Analysis of triple-switch double capacitor	
	circuit	79
CHAPT	TER IV : POWER FACTOR COMPENSATION	
	AND HARMONICS REDUCTION USING	
	TRIPLE SWITCHED CAPACITOR CIRCUIT	90
4.1	Introduction	90
4.2	Power factor improvement in case of a single	
	phase full converter without free wheeling	
	diode (F.W.D.) loaded with R-L series load	92
4.3	Power factor improvement in case of a single	
	phase full converter with free wheeling diode	
	(F.W.D.)	97
4.3.1	series R-L load	97
4.3.2	series R-L with a back e.m.f.load	102
4.4	Power factor improvement in case of a single	

		Page
	phase ac regulator with resistive load	105
4.5	Harmonic current reduction in case of a single	
	phase bridge rectifier loaded with capacitive	
	load	108
4.5.1	General	108
4.5.2	Harmonic - current reduction by using a	
	switched capacitor filter	110
4.5.3	Harmonic - current reduction by using a	
	switched capacitor and a series parallel	
	resonant filters	111
CHAP	TER V : MICROPROCESSOR CONTROL OF SWITC	CHED
	CAPACITOR AND EXPERIMENTAL SET-UP	114
5.1	Introduction	114
5.2	Microprocessor control	115
5.2.1	General	115
5.2.2	8-bit (8085) and 16-bit (8086) microprocessor	116
5.2.3	Software program	118
5.3	Experimental set-up	120
5.3.1	The zero-crossing detector (Z.C.D.)	124
5.3.2	Dead-zone and complementary switching	

		Page
	function generator	126
5.4	The power MOSFET drive circuit	129
5.4.1	Optocouplers and isolation of gate-controlling	
	signals from power circuits (MOSFETs)	129
5.4.2	The ICL 7667 CPA chip	131
5.5	Experimental results	132
5.51	General	132
5.5.2	Single phase full converter without F.W.D. loaded	
	with R-L series load	134
5.5.3	Single phase full converters with F.W.D. loaded	
	with R-L series load	141
5.5.4	Single phase full converters with F.W.D. loaded	
	with R-L series load and a battery	146
5.6	Single phase ac regulator with pure resistive	
	load	151
5.7	Harmonic current reduction in case of a single	
	phase bridge rectifier with a parallel R-C load	151
CONCLU	SION	159
REFEREN	VCES	161
APPEND	DIX A	167
APPEND	APPENDIX B	

LIST OF FIGURES

Figure	No.	TITLE	Page
Fig.(1-1) :	Static compensator of thyristor switched capacitor	8
Fig.(1-2)	:	Static compensator of the thyristor controlled reactor	9
Fig.(1-3)	:	Single-phae commutated semiconverter a. Circuit b. Waveforms of input voltage, output voltage, and supply current	1 1
Fig.(1-4)	:	Single phase forced commutated full converter	12
Fig.(1-5)	:	Waveforms of input voltage, output voltage, and supply current in case of symmetrical angle control	13
Fig.(1-6)	:	Waveforms of input voltage, output voltage, and supply current in case of pulse-width-modulation control	14
Fig.(1-7)	:	Sinusoidal pulse-width-modulation	16
Fig.(1-8)	:	Basic principle of passive filter	2 1
Fig.(1-9)	:	Basic principle of active filter	22
Fig.(1-1	0) :	Combination of a series active and shunt passive filter	26
Fig.(1-1	1) :	Priciple of s-c compensator	29
Fig.(1-1:	2) :	S-c and a series passive filters	29

Fig.(2-1)	: Single phase circuit	3 1
Fig.(2-2)	: Different types of load	3 2
Fig.(2-3)	 : Waveforms of output voltage and supply current in case of : a. Fully controlled bridge rectifier loaded with resistive load. b. Fully controlled bridge rectifier loaded with highly inductive load. c. Half-controlled bridge rectifier loaded with highly inductive load d. Fully controlled bridge rectifier loaded with series highly inductive load with a back e.m.f. load e. Fully controlled bridge rectifier loaded with a parallel R-C load 	33
Fig.(2-4)	 Single phase full wave controlled converter without F.W.D. a. Circuit b. Waveforms of output voltage, load current, and supply current 	37
Fig.(2-5a)	: Supply current waveform and its spectra at triggering angle equals to 0° in case of a single phase full converter without F.W.D. loaded with R-L series	39
Fig.(2-5b)	: Supply current waveform and its spectra at triggering angle equals to 15° in case of a single phase full converter without F.W.D. loaded with R-L series load	40
Fig.(2-5c)	: Supply current waveform and its spectra at triggering angle equals to 30° in case of a single phase full converter without F.W.D. loaded with R-L series load	4 1

Fig.(2-5d)	:	Supply current waveform and its spectra at	
		triggering angle equals to 45° in case of a single phase full converter without F.W.D. loaded with R-L series load	4 2
			42
Fig.(2-6)	:	The variation of displacement and power factors vs the tiggering angle in case of a single phase full converter without F.W.D. loaded with R-L series	43
Fig.(2-7)	:	Single phase full wave controlled converter with F.W.D. a. Circuit b. Waveforms of output voltage, load current, and supply current	44
Fig.(2-8a)	:	Supply current waveform and its spectra at	
		triggering angle equals to 15 ⁰ in case of a single phase full converter with F.W.D. loaded with R-L series load	48
Fig.(2-8b)	:	Supply current waveform and its spectra at triggering angle equals to 75° in case of a single phase full converter with F.W.D. loaded with R-L series load	4 9
Fig.(2-9)	:	The variation of displacement and power factors vs the triggering angle in case of a single phase full converter with F.W.D. loaded with R-L series load	50
Fig.(2-10)	;	Single phase full converter with F.W.D. a. Circuit b. Waveforms of output voltage and	
		load current	5 1
Fig.(2-11a)	:	Supply current waveform and its spectra at	
		triggering angle equals to 300 in case of a single	

		phase full converter with F.W.D. loaded by series R-L with a back e.m.f. load	5 4
Fig.(2-11b)	:	Supply current waveform and its spectra at	
		triggering angle equals to 120° in case of a single phase full converter with F.W.D. loaded by series R-L with a back e.m.f. load	55
Fig.(2-12)	:	The variation of displacement and power factors vs the triggering angle in case of a single phase full converter with F.W.D. loaded by series R-L with a back e.m.f. load	56
Fig.(2-13)	:	The circuit and the waveform of the supply current in case of ac voltage regulator with resistive load	57
Fig.(2-14a)	:	Supply current waveform and its spectra at	
		triggering angle equals to 300 in case of ac voltage regulator with resistive load	58
Fig.(2-14b)	:	Supply current waveform and its spectra at	
		triggering angle equals to 1200 in case of ac voltage regulator with resistive load	5 9
Fig.(2-15)		The variation of the displacement and power factors vs the triggering angle in case of ac voltage regulator with resistive load	60
Fig.(2-16)		Single phase uncontrolled full converter a. Circuit b. Waveforms of output voltage and supply current	62
Fig.(2-17)	:	Supply current waveform and its spectra in case of a single phase uncontrolled full converter with R-C load	65
Fig.(3-1) :	:	Bidirectional switch and its symbol	68